Thank you to our Patrons

We will begin our presentation in a few minutes...

A PechaKucha celebrates people, passion and creative thoughts.

Prof. Boya Xiong Assistant professor University of Minnesota, Twin Cities AAEES member

Leadership and Excellence in Environmental Engineering and Science

We use a lot of plastics in modern life

THE LINEAR AND LEAKY PLASTIC CYCLE

Source and impact of plastic debris in natural environment

Microplastic and nanoplastics are break down products of large plastic debris

?

Mission of Xiong lab: expand method and knowledge of polymer degradation in the environment

Proposed abiotic degradation pathways that generate micro/nanoplastics on land and water

Abrasive wear at the initial contact is at nanoscale

Nanoscale control and measurement of abrasive wear to quantify nanoplastic release *per input force*

Lateral force microscopy

Nanoscale wear of virgin LDPE is primarily abrasive ploughing wear, release little debris

Polymer transfer to tip during nanoscratching: novel release profile of nanoplastic release

Micro/nanoplastics release by attaching to sand

Quantifying nanoscale wear rate at single asperity level (μm³/μm·μN)

3D topography image

Impact of photo-oxidation: increase in wear rate and shift of wear mechanism

Impact of photo-oxidation: increase in wear rate and shift of wear mechanism

Photo-oxidation increase in *wear rate* and increase the likelihood of wear release as nanoplastics

released as nanoplastics

For the first time, we estimate *nanoplastic release* at single asperity level

Measuring actual release of nanoplastics

Sliding using gentle force (~300 nN)

μm 0.7 0 -0.5

Unpublished results

Beach, soil erosion

Increasing photooxidation

Water column/ Watershed scale 0.4-4 ×10⁻³ µm³/µm∙µN Rivers Plastic input into th ocean (Mout) > 50 20 10 0 t d⁻¹ C

Q and **A**

If you have a question, just click on the Q and A icon on the bottom of the screen and type it in there.

Leadership and Excellence in Environmental Engineering and Science

Nicole Fahrenfeld, PhD

Associate Professor Rutgers, The State University of New Jersey AAEES member

Leadership and Excellence in Environmental Engineering and Science

Plastics production continues to increase

...and is harder to ignore

TECHNOLOGY

Is This the End of Recycling?

Americans are consuming more and more stuff. Now that other countries won't take our papers and plastics, they're ending up in the trash.

By Alana Semuels

The Atlantic

Fish mistaking plastic debris in ocean for food, study finds

Behavioural evidence suggests marine organisms are not just ingesting microplastics by accident but actively seeking them out as food

▲ Fish eat microplastics driven by their odour. Above, debris found in the stomach of a fish in Portugal. Photograph: Paulo Oliveira/Alamy

Fish may be actively seeking out plastic debris in the oceans as the tiny pieces appear to smell similar to their natural prey, new research suggests.

Improve our ability to measure environmental microplastics

Improve our ability to measure environmental microplastics

Impact of subsampling on polymer diversity and MP concentrations ?

Subsampling strategies ...beware of those based on visual ID only!

polyethylene (PE)	polypropylene (PP)	polystyrene (PS)
Mills	mar ()	92 um /
PE Las um	oxidized PP	oxidized PS
acrylic	alkyd resin	EDPM

Subsampling impacts on polymer diversity and concentration

Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity†

Characterize MP in stormwater

Length, µm

Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity[†]

Swaraj Parmar, ^a Georgia Arbuckle-Keil, ^D^a G. Kumi^a and N. L. Fahrenfeld ^{b*}

Characterize MP in stormwater

Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity†

Swaraj Parmar,^a Georgia Arbuckle-Keil, 💿 ^a G. Kumi^a and N. L. Fahrenfeld 💿 *^b

ELSEVIER

Stormwater runoff microplastics: Polymer types, particle size, and factors controlling loading rates

Lilia Ochoa °, Julianne Chan °, Caitlyn Auguste ^b, Georgia Arbuckle-Keil ^b, N.L. Fahrenfeld ° 🐥 🖾

Volume 929, 15 June 2024, 172485

Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity†

Swaraj Parmar,^a Georgia Arbuckle-Keil, 💿 ^a G. Kumi^a and N. L. Fahrenfeld 💿 *^b

Science of The Total Environment Volume 929, 15 June 2024, 172485

Stormwater runoff microplastics: Polymer types, particle size, and factors controlling loading rates

Lilia Ochoa ª, Julianne Chan ª, Caitlyn Auguste ^b, Georgia Arbuckle-Keil ^b, N.L. Fahrenfeld ^a 📯 🖾

Understand estuarine distribution and entry into food web

Understand estuarine distribution and entry into food web

Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsovier.com/locate/chemosohere

(1)

Dana M

Quantification and composition of microplastics in the Raritan Hudson Estuary: Comparison to pathways of entry and implications for fate Kendi Bailey^a, Karli Sipps^a, Grace K. Saba^c, Georgia Arbuckle-Keil^b, Robert J. Chant^c, N.L. Fahrenfeld^{a,*}

500-2000 μm

(c) 40.6 40.5 0.05 mpm² 40.4 -74.4 -74.3 -74.2 -74.1 -74 -73.9 -73.8

High Flow

Understand estuarine distribution

Low Flow

Low Flow

and entry into food web

-74.4 -74.3 -74.2 -74.1 -74 -73.9 -73.8

(e) 40.6

40.5

-74.4 -74.3 -74.1 -74 -73.9 -73.8 -74.2

16-April, 2019

250-500 μm

11-April, 2019

Erik J. Nitzberg ⁶, Swaraj Parmar ^b, <u>Georgia Arbuckle-Keil ^b, Grace K. Saba ^c, Robert J. Chant ^c, N.J. Fahrenfeld ⁶ 🞗 🖄</u>

ELSEVIER

estuary

Chemosphere Volume 361, August 2024, 142523

Microplastic concentration, characterization, and size distribution in the Delaware Bay estuary

Erik J. Nitzberg ^a, Swaraj Parmar ^b, Georgia Arbuckle-Keil ^b, Grace K. Saba ^c, Rabert J. Chant ^c, N.L. Fahrenfeld ^a A 🖾

M 📕 Fiber 📕 Fragment 📕 Sphere

Sampling Date and Site	Zooplankton Species	Ingestion Incidence (MP individual ⁻¹) Average ± SD		
7/26/2018 Site 2	A. tonsa	$\textbf{0.30}\pm\textbf{0.07}$		
4/11/2019 Site 4	A. tonsa	$\textbf{0.73} \pm \textbf{0.09}$		
Site 5	P. crassirostris	$\textbf{0.60} \pm \textbf{0.08}$		
Site 6	P. crassirostris	$\textbf{0.74} \pm \textbf{0.14}$		
4/16/2019 Site 1	A. tonsa	$\textbf{0.69} \pm \textbf{0.13}$		
Site 2	C. typicus	$\textbf{0.82}\pm\textbf{0.48}$		
Site 3	A. tonsa	0.51 ± 0.14		

Pervasive occurrence of microplastics in Hudson-Raritan estuary zooplankton

Karli Sipps^a, Georgia Arbuckle-Keil^a, Robert Chant^b, Nicole Fahrenfeld^c, Lori Garzio^b, Kasey Walsh^b, Grace Saba^{b,*}

Impact of nitric acid digestion on ability to accurately ID polymers extracted from biota?

April 16, 2019

Treatment

0

0°0

Analysis

Interpretation

Systematic Identification of MicroPLastics in the Environment

Developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany

estuary zooplankton Karli Sipps^a, Georgia Arbuckle-Keil^a, Robert Chant^b, Nicole Fahrenfeld⁴, Lori Garzio⁵, Kasey Walsh⁵, Grace Saba^{5,b}

Department of Chemistry, Budges, The Share University of Non-Jersey, Canaden, NJ 081182, USA
Department of Marine and Cousaid Sciences, Ragen, The Sate University of New Jimery, New Binewick, NJ 08901, USA

Pervasive occurrence of microplastics in Hudson-Raritan

on microplastic identification via FTIR and Raman spectroscopy, implications for environmental samples

Karil Sipps^{1,2} - Shreya Patil^{3,4} - Lilia Ochoa³ - Julianne Chan³ - Caitiyn Auguste¹ - Georgia Arbuckle-Kell¹ - N. L. Fahrenfeld³

Improve our ability to measure environmental microplastics

Characterize MP in stormwater

Understand estuarine distribution and entry into food web Consider subsampling strategy to capture MP concentration and polymer diversity, biases introduced by acid digestions

Stormwater is an important pathway of entry with a diverse range of polymer types, buoyant and non-buoyant

Frontal zones can concentration microplastics, particle size distribution varies spatially

Aresty Research Center

Division of Undergraduate Academic Affairs

1917676

THE

Water

Research

FOUNDATION

Science of The Total Environment Volume 929, 15 June 2024, 172485

Stormwater runoff microplastics: Polymer types, particle size, and factors controlling loading rates

Lilia Ochoa ª, Julianne Chan ª, Caitlyn Auguste ^b, Georgia Arbuckle-Keil ^b, N.L. Fahrenfeld ^a 🞗 🛛

Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity[†]

Swaraj Parmar, a Georgia Arbuckle-Keil, D a G. Kumia and N. L. Fahrenfeld 💷 *b

Science of The Total Environment Volume 809, 25 February 2022, 151104

onment

Inter-storm variation in microplastic concentration and polymer type at stormwater outfalls and a bioretention basin

William Boni ª, Georgia Arbuckle-Keil ^b, N.L. Fahrenfeld ^a 📯 🖾

Science of the Total Environment 817 (2022) 152812

Pervasive occurrence of microplastics in Hudson-Raritan estuary zooplankton

Karli Sipps ^a, Georgia Arbuckle-Keil ^a, Robert Chant ^b, Nicole Fahrenfeld ^c, Lori Garzio ^b, Kasey Walsh ^b, Grace Saba ^{b,#}

⁶ Department of Chemistry, Ratgers, The State University of New Jersey, Camden, NJ 08102, USA ^b Department of Marine and Coastal Sciences, Ratgers, The State University of New Jersey, New Branswick, NJ 08901, USA

Erik J. Nitzberg ⁶, Swaraj Parmar ^b, Georgia Arbuckle-Kell ^b, Grace K. Saba ^c, Robert J. Chant ^c, N.L. Fahrenfeld ^c ², 8

Quantification and composition of microplastics in the Raritan Hudson Estuary: Comparison to pathways of entry and implications for fate Kendi Bailey *, Karli Sipps ^b, Grace K. Saba ^c, Georgia Arbuckle-Keil ^b, Robert J. Chant ^c, N.L. Fahrenfeld ^{b,*}

Q and **A**

If you have a question, just click on the Q and A icon on the bottom of the screen and type it in there.

Leadership and Excellence in Environmental Engineering and Science

Fabrizio Sabba, PhD, ENV SP

Process Engineering Associate Black & Veatch

Why are we concerned with oxygen concentrations in wastewater?

The solution is in the nitrogen cycle

Leveraging Metabolic Versatility in the Microbial N Cycle for Sustainable Nutrient Removal

Highly energy intensive due to <u>high dissolved oxygen</u> concentrations (>3 mg/L), and required high levels of organic carbon

Leveraging Metabolic Versatility in the Microbial N Cycle for Sustainable Nutrient Removal

Comammox Diversity, Putative Niche, and Relevance to Practice

- Comammox form two distinct clades within the genus Nitrospira¹
- Comammox Nitrospira appear to be adapted to an oligotrophic lifestyle with low NH₄⁺, and possibly also low dissolved oxygen²

1. Daims et al. 2015 *Nature* 428: 504-509 2. Kits et al. 2017 *Nature* 549: 269-272.

Research Objectives

- 1. Elucidate the impacts of DO on different nitrifying communities
- 2. Use bench scale data to estimate kinetic rates via model data fitting across the facilities
- 3. Determine key microbial players via 16S rRNA amplicon sequencing and qPCR

Tested Facilities

Parameter	CRWS plant	TMCRWS plant	DCRWS plant
Total SRT	10-12 d	12-14 d	8.5 d
MLSS (average)	6,000 mg L ⁻¹	5,800 mg L ⁻¹	3,800 mg L ⁻¹
DO (average)	Based on DO setpoints	5.0 mg L ⁻¹	2.33 mg L ⁻¹
Aeration strategy	ABAC System	N/A	N/A
Bio-P	Yes	No	Yes
Settleability	Avg SVI= 55 mL g ⁻¹	Avg SVI= 85 mL g ⁻¹	Avg SVI= 85 mL g ⁻¹
BNR configuration	A/O Process	CAS	A2/O Process
	ABs 1-12	ABs 1-11	ABs 1-3
	Anaerobic A1 A2 B C	Aerobic RAS	Anaerobic Anoxic Aerobic

Experimental Setup

CRWS	TMCRWS	DCRWS	Plant	DO tested (mgDO L ⁻¹)
			CRWS	0.25, 0.75, 1.5 and 8.0 mg L ⁻¹
\bigcap			TMCRWS	0.25, 0.75, 1.5 and 8.0 mg L ⁻¹
			DCRWS	0.25, 0.75, 1.5 and 8.0 mg L ⁻¹
6.		1 · · · · · · · · · · · · · · · · ·		
	Air pump	Air nump		
Air pump 🥥				

Ammonia Removal at low DO

Ammonia Removal Rates

Nitrate Production Rates

16 and qPCR analysis shows significant presence of NOB

Targeted qPCR shows presence of comammox

Kinetics Parameters Estimation

Kinetics Parameters Estimation

63

Key Takeaways – Strategies for energy and resource efficient N removal

- Low DO-adapted biomass achieve highest removal rate and maxes out at lowest DO → higher DO would be a waste of energy
- Comammox Nitrospira was found in both plants with longer SRT → crucial parameter for selection
- Two strains with different affinity for oxygen were found in comammox Nitrospira was found in both plants with long SRT

0.25

0.75

TMCRWS

DCRWS

0.25

CRWS

rate

[mgN/gVSS/L]

0.25

0.75

15

From (near) Zero to Hero

How Microbes Thrive in Low Dissolved Oxygen Water Resource Recovery Facilities

BREAKING NEWS

Apparent resiliency of microbial populations adapted to low DO

High nitrification rates at different DO concentrations

Trinity River Authority of Texas Enriching the Trinity basin as a resource for Texans

BUILDING A WORLD OF DIFFERENCE

Q and **A**

If you have a question, just click on the Q and A icon on the bottom of the screen and type it in there.

Leadership and Excellence in Environmental Engineering and Science

Greg Lackey, Ph.D. *Research Engineer* National Energy Technology Laboratory AAEES Member

Leadership and Excellence in Environmental Engineering and Science

There are millions of oil and gas wells in the United States

Wells that leak pose an environmental risk

However, intact wells present opportunities as well

Historic levels of funding are currently available for plugging orphaned and marginally productive wells

Orphaned Wells

Marginal Wells

Bipartisan Infrastructure Law: \$4.7 billion Inflation Reduction Act: \$350 million

Most states prioritize leaking wells for plugging

	DSR	Leak	Safety	Well	Log.	Geo.	Surf.	Econ.	EJ
California	1	4		2	5	6	7		3
Federal	L	2	2		4				4
Indiana	2	1	5	3		6	4	7	
Louisiana	3	- 1	2	6	4	4	7	8	
Michigan	2	1	6	3	7	4	8		5
Montana	1	3	5	2			4	6	
Nebraska	2			1				3	
New Mexico	3	1	4	2	5	5		7	
New York	1	3	2	4	5	6	7	8	
Ohio	1	2	3	6	4	5	7	8	
Pennsylvania	2	1	3	5	5	4	7		
Texas	3	1	1	4	6	5		7	

lyer et al., In Review

Leaking wells also a priority for other subsurface energy operations

Well leaks require both a source and a pathway

Sources: producing/intermediate zones; Pathways: annuli, barrier flaws
Well integrity data are only available in a few U.S. states

12 Diana State of Colorado Dil and Gas Conservation Commission 1128 Uncels Samet, Salas 801, Denne, Calando 80039 (State 84 2100 Fer (2021) 894 2105								HER GEEE VER DREA		1	
Nap I, Resard at Nap I, Sample re Nap I, Conduct I Step 4, Conduct I Step 6, Sand Jack	BR. tuding and camp p w F clampatilla to tudential the state time and a to 61.0 with 30 a		ND TEST RE	PORT	n Frist pre	mousty	-				
1 DOCC Operator Number: "									11 Date of Yest (JULY 20, 1995) 12 Vest Status / Ploying Shia () Glas Lit () Purporty () hydra Clas Lit () Purporty () hydra Clas Lit () Purporty () hydra Planger () 13 Namber of Careg Status Tao () Three () Liter?		
Record all pressures as found	Tubing: 250 Fm: MV	Tubing Fm	Pros Casing 2002 Fm. 16V	Cog	date .	Surfa Case		18. STEP 2: S	instruction	ons above	
15			STEP 3: BR	DENHE	AD TES	ST	_	-		-	
Buried varve?	Yes DNs	Confirmed open1	Yes No	Elapson Time Mill Sect	1.000	-	in	Production Cataly PSIG	Caung Para	free and	
With gauges montoining production, intermediate casing and tabing pressures, open surface many (prospective) of no intermediate casing, monitor only the production casing and tabing pressures.) Record pressures at five minute intervals. Define characteristics of flow in 'Brademined flow' course.					250			300 -	U	0	
					250	i.		980	(11)	W.	
uting rear designations detow. D = No Flow: C = Continuous; D = Deven to 8; V = Vapor H = Water H2O; M = Mud; W = Whiteper; B = Surge; G =Gee DHADENETIAD SAMINE TAKEN?				10:	250	5		300	0	10	
				250		2		300	0	10	
Character of Bradenbash Budt				~	350		.300	0	. 14		
Sulu	Salty	E Back		25							
Barrgie cytinde	number.			~					1		
					Non in	stantant	out IPAC	erheid PSIG #	next of test	20	

The frequency of integrity issues varies widely across regions

The Greater Wattenberg Area is an excellent case study

A relatively high percentage of GWA wells have experienced integrity issues

Machine learning models make useful predictions about integrity issues and provide insight into drivers

Models predict probability (not magnitude) of integrity issue

Integrity issues are spatially clustered

Well location impacted likelihood of leakage

Percentage of wells with integrity issues was ~4x greater inside hot spot

Integrity issues spatially align with geologic features

Older wells were not more likely to experience integrity issues

Identifying clusters of integrity issues is practicable

Most states have compliance inspection programs that could be extended with similar models

Working to incorporate other valuable information into models

Data availability is a challenge

G

Reviewed

OGRRE

PROJECTS RECORDS

♠ / PROJECTS / ILLINOIS TEST PROJECT / 1. 120190129000_WELL_COMPLETION_REPORT_1

1. 120190129000_WELL_COMPLETION_REPORT_1 ---

Field	Value	Confidenc	BOON ILE STATE OFFICE BUILDING DIVISION OF OIL AND GAS SPRINGFIELD,
COUNTY	Champaign	100 °	Injection-Withdrawal ILLINOIS WELL COMPLETION REPORT COUNTINIS, A290
DATE_DRILLING_BEGAN	1971-07-30	100 (INSTRUCTIONS: Within thirty (30) days after the completion of any well, the owner or operator shall transmit to the Oil and Gas the Original and one Copy of this form. Upon request, geological information will be kept confidential for one year from the permit is issued. A copy of an electric log (if run) and other pertinent information is to be sent to Illinois State Geological Survey Resources Building, Urbana, Illinois.
DATE_ISSUED	1971-07-01	100 °	Oil Gas Dry Hole SWD Water Input Gas Input Conv Str. Test Water Supply Observation
BROUND	753.6	100 '	Operator Peoples Gas Light & Coke Weil Name and No G. C. Ruckman #1
/INE_INTERMEDIATE_CSG_PULLED	No	100 ^c	Permit No. 528 Date Issued 7/1/71 Location 200'N 60'W SEC NW NE County Champaign Section 19 Township 21N Range 7E
INE_INTERMEDIATE_SKS_CEMENT	400	100 '	Elevation: DF KB 767.6 Ground 753.6 Total Depth 4376 P.B.T.D. 431 Date Drilling Began 7/30/71 Date Drilling Completed 8/24/71
PERMIT_NO	528	100 '	Rotary Tools from Surface To To To Hole Size 224"-3036' Electric or Other Logs Run: Yes X No. Date 8/24/71
ROTARY_TOOLS_FROM	Surface	100 °	8 3/4"-4376' Drilled Out New Well X Deepened Plugged Hole Lease Sign Posted: Yes X No
ECTION	19	100 '	Was Well Cored: Yes No X Drill Stem Test Run: Yes No
	No	100 (Size Depth Sks. Cement Cag. Pulled Surface 13 3/8" (480/ft) 369" 400 No

Consortium Advancing Technology for Assessment of Lost Oil & Gas Wells.

Building tools to help states digitize their data

Tremendous opportunities to gather information on older wells

New EPA GHG reporting rules will fundamentally alter availability of well leakage data

Sources and Locations of Fugitive Emissions Common on Marginal Conventional Well Sites Stuffing Box Leakage Pressure Valves Valves Valves Noduced Water Dial Produced Pro

Subsurface Gas Migration

Well integrity is important to monitor and maintain to preserve the subsurface as a resource

Clean Air Task Force, Class VI Map

Lackey et al., 2023

Q and **A**

If you have a question, just click on the Q and A icon on the bottom of the screen and type it in there.

Leadership and Excellence in Environmental Engineering and Science

Would you like to attend our next webinar?

We have several webinars happening in the near future. Go to <u>https://www.aaees.org/events</u> to reserve your spot.

Would you like to watch this webinar again?

A recording of today's event will be available on our website in a few weeks.

Not an AAEES member yet?

To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at <u>mwaterman@aaees.org.</u>

Need a PDH Certificate?

You will be emailed a PDH Certificate for attending this webinar within the next week.

Questions?

Email Marisa Waterman at <u>mwaterman@aaees.org</u> with any questions you may have.

Leadership and Excellence in Environmental Engineering and Science