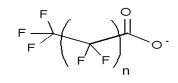
Limitation of PFAS Data and Recommendations to Obtain Appropriate Data for Environmental Decision Making

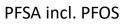
NJWEA

AAEES - Contaminants of Emerging Concern (CECs) May 6, 2019

Nancy C. Rothman, Ph.D.

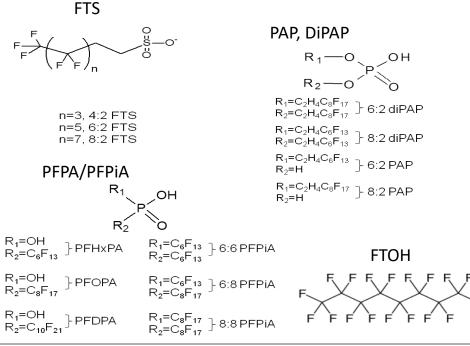
New Environmental Horizons, Inc.


34 Pheasant Run Drive, Skillman, NJ 08558 Phone: Nancy 908-874-5686 email: nrothman_neh@comcast.net web site: www.neh-inc.com

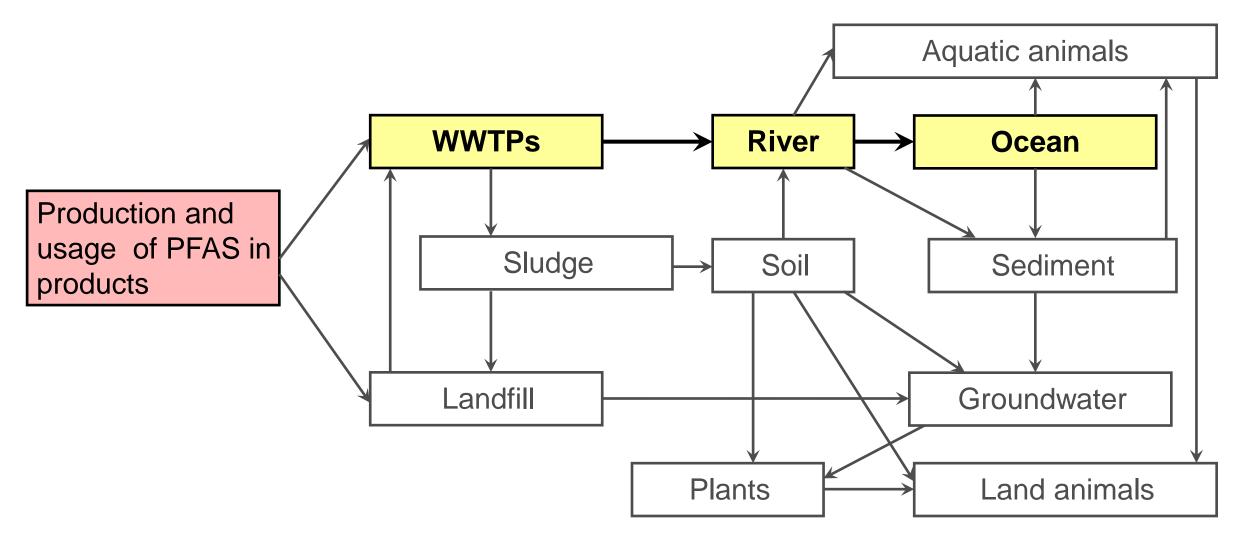

AXYS PER AND POLYFLUORINATED COMPOUNDS (PFAS/PFC)

PFCAs incl. PFOA

SG



n=2, PFBA; n=3, PFPeA; n=4, PFHxA; n=5, PFHpA; n=6, PFOA; n=7, PFNA; n=8, PFDA; n=9, PFUnDA; n=10, PFDoDA;


n=3, PFBS n=5, PFHxS n=7, PFOS

Poly- or perfluorinated alkyl substances (PFAS) or Perfluorocarbons (PFC) – General term for all chemicals formed from carbon chains with fluorine substituting some/all of the hydrogens on the chain

- C-F bond very strong
- Unique properties repel water and oil, surfactant, stable
- Diverse and complex chemistries based on product use
- Precursors FTS (Fluorotelomer Sulfonate), PAP (Polyfluorinated Alkyl Phosphate Esters), PFPA (Polyfluorinated phosphonic acid), FTOH (Fluorotelomer alcohol) can all degrade to Carboxylates and Sulfonates

Environmental Fate of PFCs

Ahrens et al. J. Environ. Monitor. 2011, 13, 20-31

Analysis of PFAS

USEPA Method 537.1 (version 1.0, 2018)

- <u>Only</u> applicable to Drinking Water samples
- No Recovery Correction
- Analyte list limited 18 PFAS (14 PFAS required by Method 537 + 4 added compounds)
- New DW method (Summer 2019) 25 PFAS includes 11 "short chain" compounds

ASTM D7979-17 & ASTM D7968 - 17a (2017)

- Non-Drinking water Aqueous & Soils
- No Recovery Correction
- 25 PFAS

Analysis of PFAS

SW-846 Method 8327 (Summer 2019)

- Direct Injection
- Non-Drinking Water Aqueous
- 24 PFAS
- No Recovery Correction

SW-846 Method 8328 (late 2019)

- Solid Phase Extraction/Isotope Dilution (SPE-ID)
- Non-Drinking Water Aqueous & Solids
- 24+ PFAS
- Recovery Correction

Lab-Specific Methods

- Modifications to the above methods
- Vary lab-to-lab

Analysis of PFAS

Total Oxidizable Precursors (TOP)

- Comparison of LCS-MS/MS results for sample pre- and postoxidation
- Useful for evaluating Precursor potential may be biased low

Proton Induced Gamma-ray Emission (PIGE)

• Non-destructive technique for Total Fluorine

Adsorbable Organic Fluorine /Combustible Ion Chromatography (AOF/CIC)

• Destructive technique for Total Fluorine

Analytical Issues Begin With Collection of the Samples

DoD Requirements for Personnel Collecting Samples

• No Post-it Notes; No Notebooks; No Sharpies/Markers; No Gore-Tex or Tyvek material; No Cosmetics, insect repellants, sun block, lotions worn unless 100% natural; No Waterproof material; Nitrile Gloves MUST be worn at all times

All sources of possible cross-contamination need to be eliminated and/or Evaluated

- Use Disposable Equipment if Possible
- Decontaminate equipment, if necessary, with Alconox or Liquinox using Lab Certified "PFC-free" water
- Samples should be collected in High Density Polypropylene (HPDE) with Unlined HDPE screw Caps (Teflon-lined caps MUST NOT be used)
- Trip Blanks and Field Blanks should be collected

Field Sampling Protocols to Avoid Cross-Contamination During Water Sampling for Perfluorinated Compounds (PFCs); enclosure to Navy Drinking Water Sampling Policy for Perfluorochemicals Perfluoroctane Sulfonate and Perfluoroctanoic Acid, N45 Ser/15U132432, 14 SEP 15.

Types of Data Reports

1. Summary Data Package - *Recommended*

- Narrative explaining Method of Analysis and any issues with sample receipt and analysis
- Sample Results (including FB and FD) + Surrogate recoveries
- QC results (MB, LCS, MS, & MSD or FD)
- Executed Chain-of-Custody
- 2. Full Deliverable all of above + raw data
- 3. Result Forms/Tables only <u>Not Recommended</u>

Specific Laboratory QA/QC For PFAS

- Sample preservation
- Sample Holding Times / Analytical Batches (≤ 20 samples)
- QC Samples required for each Analytical Batch:
 - Laboratory Reagent Blank (LRB) / Method Blank (MB)
 - Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS)
 - Laboratory Fortified Sample Matrix (LFSM) / Matrix Spike (MS)
 - Laboratory Fortified Matrix Sample Duplicate (LFSMD) or Field Duplicate (FD)
- Surrogates added to all samples & QC prior to extraction
- Internal Standards added to all extracts prior to analysis

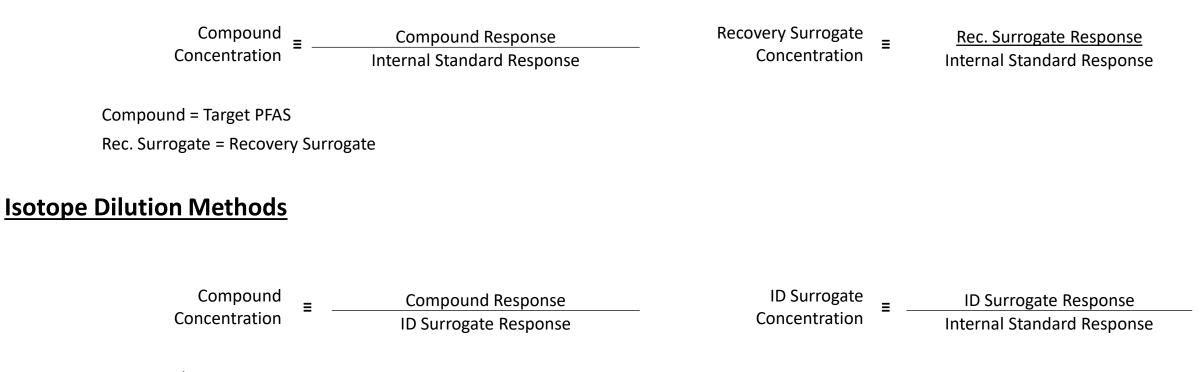
Similarities:

Added directly to the sample prior to preparation and analysis

Differences:

Recovery Surrogates

- Surrogates used to *infer* accuracy of preparation and analysis
- Internal Standards spiked prior to analysis to quantitate surrogates and target compounds

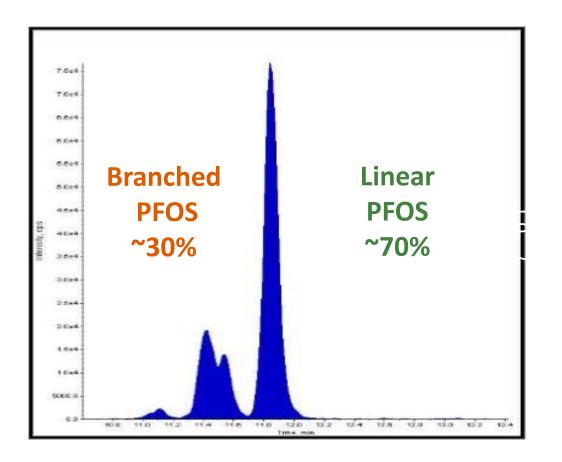

Isotope Dilution Surrogates

- Labeled Isotopes of most target compound (e.g., 13C4-PFOA, 13C4-PFOS) used for quantitation
- Loss in Isotope mirrors loss of Unlabeled compound = data are **Recovery-Corrected**

Recovery Surrogates vs. Isotope Dilution Surrogates

Non-Isotope Dilution Methods

Compound = Target PFAS ID Surrogate = Isotope Dilution


Surrogate Recovery Problems

- Surrogate recovery below criteria: potential low bias in data
 - Due to lab error or matrix effects
- Surrogate recovery above criteria: potential high bias
 - Due to interferences or instrument issues
- Non-Isotope Dilution Analysis = Detected and non-detected results may be uncertain
- Isotope Dilution Analysis = Only compound(s) associated with Isotope affected. Uncertain whether data are biased at all since results are recovery corrected

LINEAR VS. BRANCHED ISOMERS

- Eleven known isomers of PFOS
- 499>80 and 499>99 transitions have different relative response factors for the linear and the branched isomers.
- Quantitative biases possible depending on standard type and MRM transitions used for quantitation
- Distribution/half lives in tissue are different between linear and branched
- Speciation is more important in research applications. Contaminant analysis issues centered around accuracy of quantitation

Riddell, N. et. al, Environ Sci. Technol. 2009 (43) 7902-7908

Data Comparability - PFAS

Factors Affecting Comparability

- Changes in Field Collection Techniques Elimination or introduction of PFAS during Sampling
- Not using Isotope Dilution for Recovery Correction of data Sample data may vary by ±30% based on Surrogate recovery acceptance limits of 70-130%
- Degradation of Precursors Formation of compounds of concern over time
- Not including Branched Isomers in reporting of data Historic data may not have included branched isomers
- Sensitivity differences in data sets (QLs not the same)
- Compound names being reported differently

Usability Evaluation Example

Sample	Advisory Level (ng/L)	Result (ng/L)	Surrogate %R	LCS %R	MS/MSD %R/RPD	Issue?
А	70	5 U	High	High	ОК	No: Non-detect accurate as reported
В	70	66	ОК	ОК	%R low	Yes: result may be biased low and really >70 ng/L
С	70	63	Low	High	ОК	Maybe: conflicting bias
D	70	110	Low	ОК	High	No: conflicting bias but 110 >70 ng/L

Must evaluate the cumulative effect of <u>all</u> Quality Control to determine Usability and whether an Action Level has been exceeded

Conclusion

- Overall Quality depends on cumulative Quality from sampling through analysis
- Specifically for PFAS Field Collection & Analytical Method differences can introduce uncertainty
- Guidelines for Evaluating Quality
 - Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed by Method 537, EPA 910-R-18-001 (November 2018)
 - Table B-15 of QSM 5.2 Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.2 (DOD/DOE, 2018) http://www.denix.osd.mil/edqw/documents/documents/manuals/qsm-version-5-2-final-updated/

- Seven Fact Sheets (available now) and Technical Guidance Document (late 2019)
 - History and Use
 - Nomenclature Overview and Physicochemical Properties
 - Regulations, Guidance, and Advisories
 - Environmental Fate and Transport
 - Site Characterization Considerations, Sampling Techniques and Laboratory Analytical Methods
 - Remediation Technologies and Methods
 - Aqueous Film Forming Foam

