

SWMM Calibration and Sensitivity Analysis for Bioretention

Patrick O'Hara, EIT Department of Civil, Environmental, and Ocean Engineering Advisor: Elizabeth Fassman-Beck, PhD AAEES/NJWEA Workshop on Green Infrastructure – May 2018

odel

Storm Water Management Model (SWMM)

- Produced by the US Environmental Protection Agency
- Dynamic hydrologyhydraulic water quality simulation model
- Low Impact Development Controls were introduced as part of SWMM 5 in 2009

STEVENS INSTITUTE of TECHNOLOGY 3

Objective

- Evaluate the accuracy of SWMM's LID controls using data collected from GI implementations at Stevens
 - Sensitivity analysis
 - Model calibration and validation
- Few published studies have evaluated the accuracy of SWMM with LID
- Accurate models critical to evaluating design alternatives, determining regulatory compliance, etc.

Site Characteristics

Planter Modeling

How SWMM Models LID Controls

Evapotranspiration from field measured ET rates

or estimates from temperature

Infiltration from ponding zone to media layer Green-Ampt infiltration model

Inflow SWMM runoff computations for drainage area

Soil percolation modeled using Darcy's law

Drainage Empirical power law

- Continuous simulation
 - August 8, 2017 to March 14, 2018
 - 32 rain events (total P = 14.85 in)
- Model efficiency: Nash-Sutcliffe efficiency coefficient (NSE)
 - Ranges from -∞ to 1
 - $\eta = 1 \rightarrow \text{perfect match}$
- Continuous simulation NSE: 0.796
- Individual storms NSE: 0.138 to 0.992

Influence of rainfall depth

1.0 0.9 0.8 NSE Coefficient 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Rainfall depth (inches)

SWMM Efficiency for Bioretention Modeling

Influence of average rainfall intensity

SWMM Efficiency for Bioretention Modeling

SWMM Efficiency for Bioretention Modeling

Sensitivity Analysis

Sensitivity Analysis

STEVENS INSTITUTE *of* TECHNOLOGY 14

Sensitivity Analysis

Differences between parameter values also had an impact...

Model Calibration and Validation

- March 1, 2018 storm selected for calibration
 - NSE improved from 0.72 to 0.91 (27% improvement)
 - Peak flow error improved **12%**
- Overall continuous simulation improved by 5% to **0.84**.
 - Accuracy for individual storms generally improved, though some got worse

Model Calibration and Validation

Parameter	Sensitivity Test Range	Measured Value	Calibrated Value	Change
Media porosity	0.34 to 0.70	0.290	0.110	↓ 0.180 (62%)
Media field capacity	0.10 to 0.40	0.244	0.100	↓ 0.144 (59%)
Conductivity (in/hr)	0.03 to 11.78	6.600	8.000	1 .400 (21%)
Drain flow exponent	0.00 to 1.00	0.500	0.660	↑ 0.160 (32%)
Storage void ratio	0.25 to 1.00	0.750	0.660	↓ 0.090 (12%)
Wilting point	0.01 to 0.16	0.105	0.001	↓ 0.104 (99%)
Storage depth (in)	N/A	6.000	5.000	↓ 1.000 (17%)
Drain offset height (in)	N/A	3.000	3.500	↑ 0.500 (17%)

- SWMM is a useful tool for continuous simulations over an extended period of time and a range of conditions
- For individual storms, additional evaluation or calibration may be required for reliable results
- Accuracy of simulation highly dependent on measurements for porosity, field capacity, and other media properties
- Seasonal impacts of leaf clogging, snowfall, and snow melt not well accounted for in SWMM

Questions?

