DEAMMONIFICATION PROCESS Energetic Requirements

Prepared by: Christophe DESMOTTES

May 9, 2017

Background

Constraint of two opposing objectives:

- Increasingly stringent standards for nutrient removal
- Desire for energy self sufficient WWTP (anaerobic digestion)

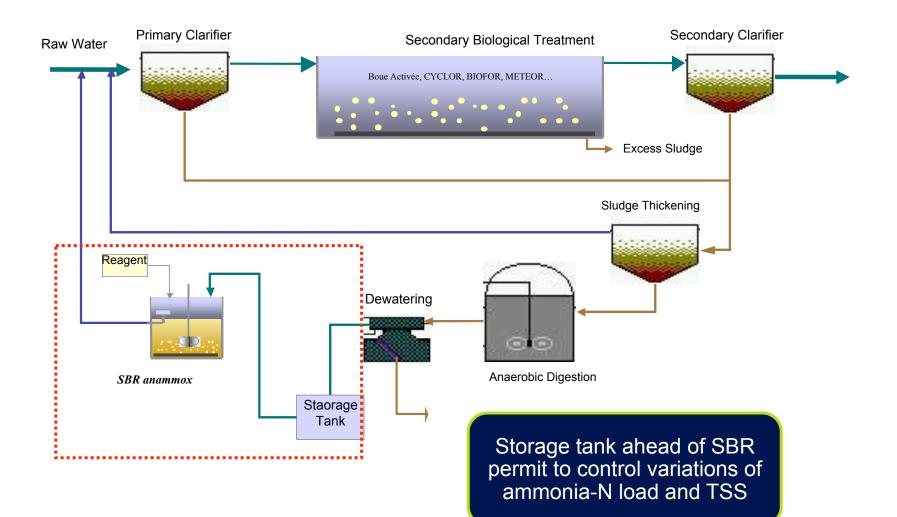
Digested supernatant namely centrate or filtrate is:

- Contributes to up to 25% of TN load in the secondary treatment but only represents 2% of the plant total hydraulic load.
- Highly N-concentrated up to 1,200 mg/l
- Unfavorable COD:N ratio for heterotrophic denitrification

Impact of side stream

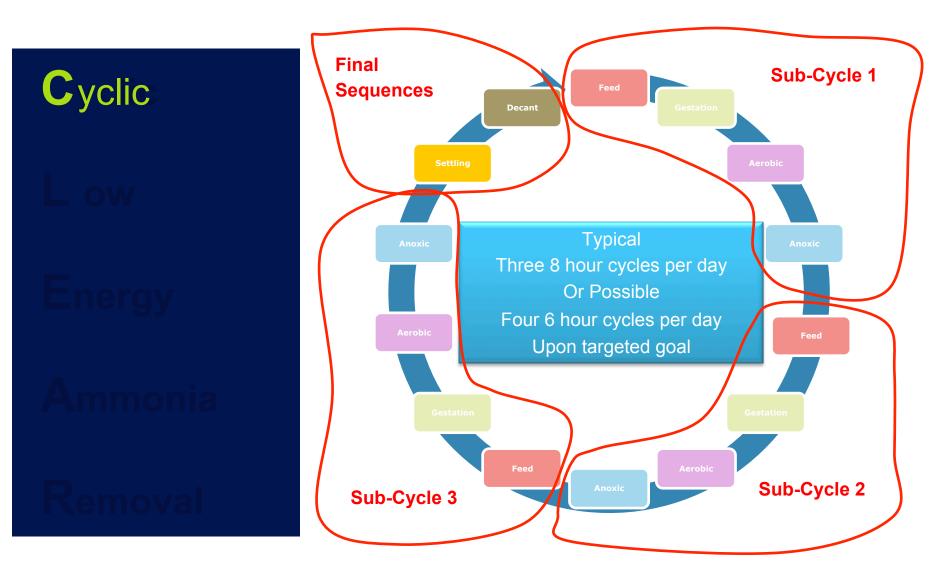
Consequence:

Additional volume of aeration and endogenous tanks for the main treatment line

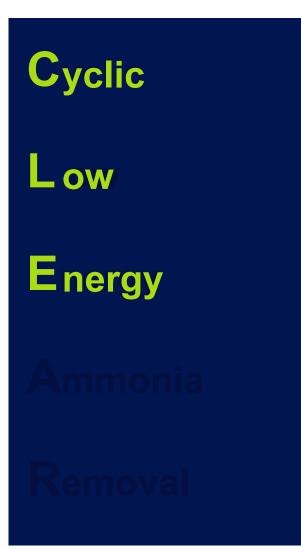

- Increased oxygen (nitrification) and external carbon source needs (denitrification)
- Risk of non-compliance with effluent standards.

Solution:

- > Separate the sidestreams treatment of N-concentrated from main streams treatment.
- ≻ Cleargreen[™] deammonification process reduces treatment electrical requirement.
- > High temperature \rightarrow favorable for slow growing bacteria like anammox.



Where does Side Stream Deammonification fit?



What is SBR anammox process?

What are SBR anammox process advantages?

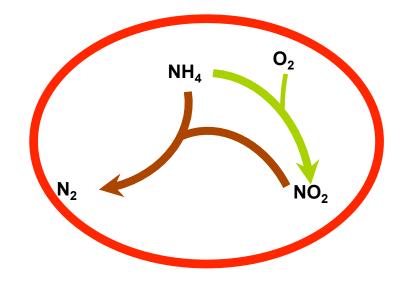
- More than 50% less oxygen demand: aeration energy savings
- ✓ 0% external carbon demand: chemicals cost savings
- \checkmark 25 to 30% less sludge production
- 20 to 40% reduction in biological treatment volumes

What are SBR anammox biological reactions?

Cyclic

Low

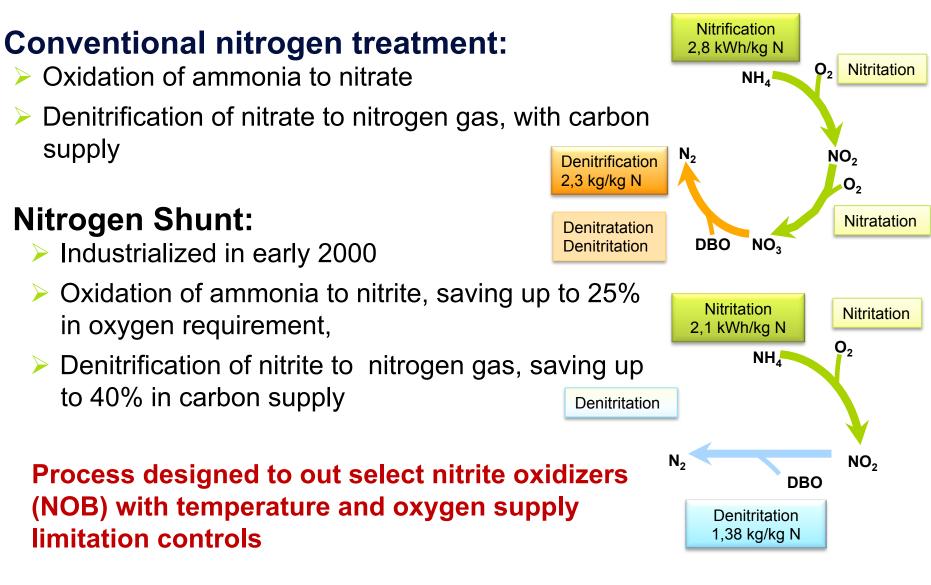
Energy


Ammonia

Removal

✓ Partial Nitritation

 Anaerobic Ammonium Oxidation (Anammox)

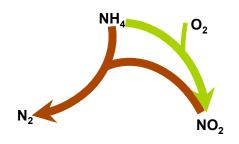

Together = Deammonification

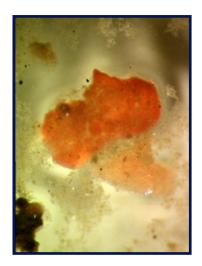
7 | May 9, 2017

Conventional nitrogen treatment energy requirements

Deammonification theoretical energy requirements

Deammonification:


- ➤ 50-60% of ammonia oxidized to nitrite
- Nitrogen gas formation by reaction of residual ammonia and nitrite throughout anammox reaction


$NH_3 + (1.32)NO_2 + H^+ \rightarrow 1.02 N_2 + 0.26 NO_3 + 2H_2O$

- Process designed to out compete nitrite oxidizers (NOB) and to develop slow growing bacteria for deammonification (AnAOB)
- Processes such as
 - CANON (Sharon-Anammox)
 - DEMON
 - OLAND (LabMet University of Gent)

developed in early 2000s with specific sludge inoculation for start-up (from 20 to 50% of the sludge)

Deammonification 1.3 kWh/ kg-N

Deammonification real energy requirements

Energy Requirements Depend on Centrate Characteristics:

- Ammonia-N concentration can varies from 700 mg/l up to 1,200 mg/l
- Alkalinity
- Micronutrients
- \succ Biodegradable organic matter \rightarrow N to COD ratio

Treatment Achievements Requirement:

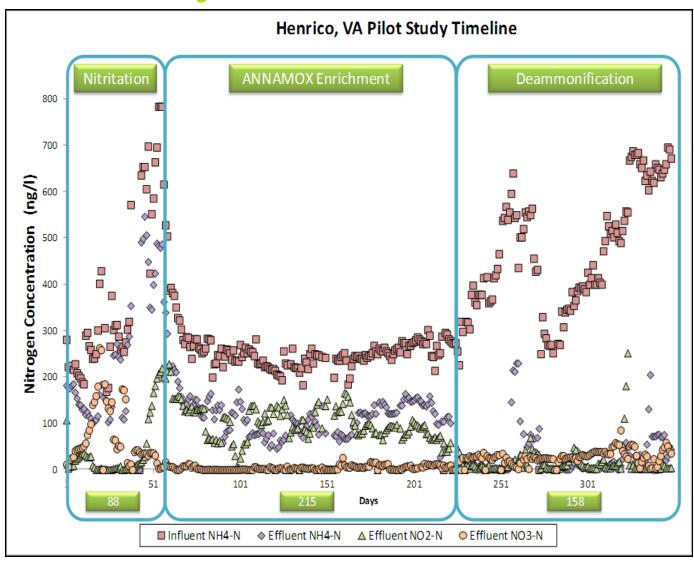
- Centrate Availability (When centrate production is limited, it requires storage and to maintain centrate temperature)
- Fotal Inorganic Nitrogen Removal

Case Study # 1

Henrico, VA

Centrate Characteristics:

Parameter	Units	Average
COD	g/m³	967
TKN	g-N/m ³	1026
TP	g-P/m ³	133
TSS	g/m³	530
VSS	g/m³	374
Alkalinity	g-CaCO ₃ /m ³	3302
рН	S.U.	7.7
Temperature	O°	33


Influent Characteristics:

Parameter	Units	Ave. (Min.; Max)
sCOD	g/m³	367 (75; 3292)
TKN	g-N/m³	346 (125; 820)
ТР	g-P/m ³	36 (13; 220)
TSS	g/m³	257 (95; 5550)
VSS	g/m³	181 (85; 3750)
Alkalinity	g-CaCO ₃ /m ³	1613 (690; 3960)
MLSS	g/m³	4470 (1150; 112000)
MLVSS	g/m³	3038 (930; 7800)

In-situ Bacteriologic Activities			Reactions ⁻	Fime per Cycle
AerAOB	AnAOB	ОНО	Aerobic Duration	Anoxic Duration
mg NH3-N/g VSS/ hour	mg N/g VSS	mg NOx-N/g VSS	Minutes	Minutes
9.4 10.2 1.6		41	49	
Calculated from onsite	data analysis (1 sı	ib-cycle)		

Case Study # 1 Henrico, VA

Process Performances:

- No anammox seeding
- 0.52 kg NH3-N/m³/day
- Ammonia-N Removal 96 %
- TIN Removal 86 %
- C/N ratio averaged at0.3 during the deammonification period

Because of centrate low C/N ratio the nitrate produced from the anammox reaction started to accumulate in SBR (orange dot).

AerAOB/aeration \rightarrow 20.2 mg/l AnAOB/anoxic \rightarrow 7.1 mg N/l OHO/anoxic \rightarrow 2.7 mg Nox/l

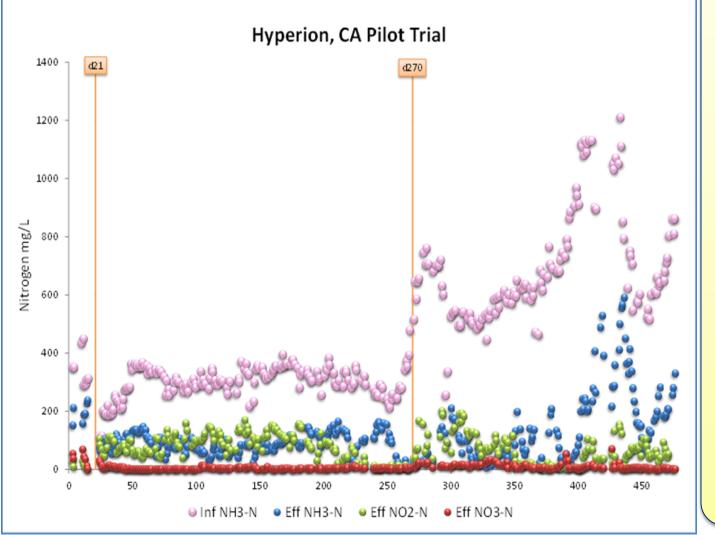
Case Study # 2

Hyperion Los Angeles, CA

Centrate Characteristics:

Parameter	Units	Average
tCOD	g/m³	1359
TKN	g-N/m ³	675
TP	g-P/m ³	46
TSS	g/m³	457
VSS	g/m³	386
Alkalinity	g-CaCO ₃ /m ³	2838
рН	S.U.	7.7
Temperature	С°	29.4

Influent Characteristics:


Parameter	Units	Ave. (Min.; Max)
sCOD	g/m³	1359 (784; 3635)
TKN	g-N/m³	675 (211; 1170)
TP	g-P/m ³	46 (17; 183)
TSS	g/m³	457 (67; 2450)
VSS	g/m³	386 (115; 1850)
Alkalinity	g-CaCO ₃ /m ³	2838 (800; 4200)
MLSS	g/m³	3761 (1420; 7300)
MLVSS	g/m³	3359 (1350; 5800)

In-situ Bacteriologic Activities		
AerAOB	AnAOB	ОНО
mg NH3-N/g VSS	mg N/g VSS	mg NOx-N/g VSS
15.8 3.37 2.54		
Calculated from onsite data analysis (1 sub-cycle)		

Reactions Time per Cycle	
Aerobic Duration	Anoxic Duration
Minutes	Minutes
31	59

Case Study # 2 Hyperion Los Angeles, CA

Process Performances:

- No anammox seeding
- 0.78 kg NH3-N/m³/day
- Ammonia-N Removal 96 %
- TIN Removal 85 %
- C/N ratio averaged at 2.5 during the deammonification period

Because of centrate high C/N ratio the nitrate produced from the anammox reaction never accumulated in SBR (red dots).

AerAOB/aeration \rightarrow 15.8 mg/l AnAOB/anoxic \rightarrow 12.1 mg N/l OHO/anoxic \rightarrow 3.3 mg Nox/l

14 | May 9, 2017

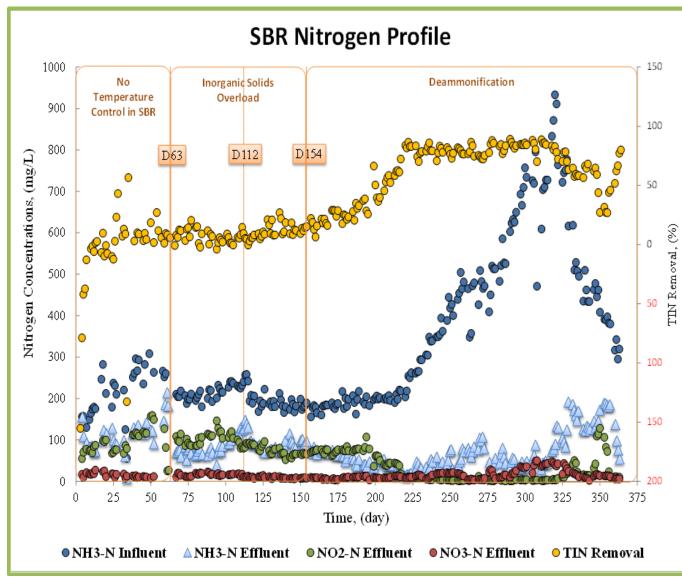
Case Study # 3

Tri-City, **OR**

Centrate Characteristics:

Parameter	Units	Average
COD	g/m³	3960
TKN	g-N/m ³	1360
TP	g-P/m ³	804
TSS	g/m³	2080
VSS	g/m³	1640
Alkalinity	g-CaCO ₃ /m ³	4040
рН	S.U.	7.9
Temperature	O°	16.5

Influent Characteristics:


Parameter	Units	Ave. (Min.; Max)
sCOD	g/m³	167 (36; 326)
TKN	g-N/m³	332 (64; 978)
TSS	g/m³	103 (18; 795)
VSS	g/m³	84 (12; 590)
Alkalinity	g-CaCO ₃ /m ³	2150 (1140; 3200)
MLSS	g/m³	4509 (1500; 6400)
MLVSS	g/m³	3393 (1000; 3300)

In-situ Bacteriologic Activities		
AerAOB	AnAOB	ОНО
mg NH3-N/g VSS	mg N/g VSS	mg NOx-N/g VSS
7.1 5.9 0.8		
Calculated from onsite data analysis (1 sub-cycle)		

Reactions Time per Cycle		
Aerobic Duration	Anoxic Duration	
Minutes	Minutes	
39	51	

Case Study # 3 Tri-City, OR

Process Performances:

- Anammox seeding
- 1.0 kg NH3-N/m³/day
- Ammonia-N Removal 96 %
- TIN Removal 85 %
- C/N ratio averaged at 1.0 during the deammonification period

Because of centrate C/N ratio the nitrate produced from the anammox reaction slightly accumulated in SBR (red dots).

AerAOB/aeration \rightarrow 15.2 mg/l AnAOB/anoxic \rightarrow 13.2 mg N/l OHO/anoxic \rightarrow 3.5 mg Nox/l

Conclusions

Energy requirements for side streams deammonification process depends on amount of biodegradable organic matter in the centrate

Respirometer test can assess the biodegradability of organic matter from centrate in relation to the side stream HRT and SRT design parameters

Side stream deammonification should be optimized based on biodegradable organic matter to limit bacteriologic competition between OHO and AnAOB while permitting TIN removal > 80%

