Energy and Process Optimization at the Water Resource Recovery Facilities (WRRFs)

S. Rao Chitikela

Municipal Water Solutions

Johnson Controls

Objectives

- US Municipal Water Infrastructure (MWI) -- Asset Renewal
- MWI Water Resource Recovery Facilities (WRRFs)
 - Energy-usage, Process Optimization, O&M, and Financials
- Performance Water Infrastructure
- Case Studies Evansville IN
 - Energy & Water-processing Efficiency and Optimization
- Conclusions

ASCE – Infrastructure Report Card, 2017

US Municipal Water Infrastructure (MWI)

[ASCE (2012 and 2013), USEPA (2016), AWWA (2016)]

- Significant US infrastructure improvement(s) are required Costs are estimated at \$3.6trillion by 2020
- US-MWI: <u>Spending-to-need ratio</u> 40% (2010) and projected decline to 26% (2040)
- Water systems and facilities
 - > 54,000 community water systems
 - > 15,000 wastewater treatment facilities
 - > 20,000 wastewater pipe systems

Sustainable, upkeep of the US water infrastructure -- costs

\$655-bln; >\$1-trillion; >\$2-trillion, by 2030 . . .

Non-Revenue Water (NRW) --Unaccounted for Water or the Water Loss

- Real, Water Losses Physical loss of water from the distribution system
 - Leaks and breaks
 - > Overflows

Apparent, Water Losses – Water use that is not accounted for

- Water meter inaccuracy
- Not being a right size or type
- Billing system mistakes/errors
- Other, inaccurate estimation(s) flushing, etc.
- **Revenue Losses** significant; can be reduced.

Atlantic County (NJ) – WRRF, schematic

(ref. ACUA, Wastewater 101, http://www.acua.com/wastewater101/, accessed 4/9/17)

WRRFs – Process & Energy Optimization

- Building Facilities
- Liquid Treatment Train
 - Preliminary/Headworks screening and grit removal
 - Soluble-COD, and no-grit escape are critical
 - Primary
 - BOD and TSS removal, and no-grit escape to secondary/ABs
 - Soluble-COD or the Volatile-acids to BNR
 - Secondary (ABs + clarifiers) and Tertiary
 - TN and TP removal focus
 - Disinfection
 - Chlorination/dechlorination, or UV

WRRFs – Process & Energy Optimization cont'd.

• (Bio)Solids Treatment Train

- Solids Thickening
 - Chemical conditioner use and %solids-to-stabilization
 - Soluble-COD or Volatile-acids to support-BNR
- Solids Stabilization
 - Aerobic or anaerobic
- Solids Dewatering
 - %cake-solids; mg/L-TSS-filtrate; %solids-recovery
- Solids Disposal
 - Class A or B; Solids-incineration; Biosolids/ash landfilling

Energy Usage – Municipal Water Processing

(some general information)

U.S., average of 5,000 kWh/MG, from water-intake to watershed-return (not a benchmark value)

WRRF Energy Usage

Energy consumed among a variety of processes and equipment

Ref. USEPA, Derived from the data from Water Environment Energy Conservation Task Force – Energy Conservation in Wastewater Treatment

Electricity Requirements for Activated Sludge Wastewater

Derived from data from the Water Environment Energy Conservation Task Force Energy Conservation in Wastewater Treatment

Energy Usage and Process Efficiency Upgrades

Water Treatment & Distribution

- Unit operations and process systems
- Water metering & AMR/AMI
- Water loss Control
- Efficient and right-sized pumping systems
- Residuals Processing
- Renewable energy

Water Resource Recovery Facilities

- Unit operations and process systems
- I/I Control
- Efficient and right-sized pumping systems
- Biosolids Processing
- Renewable energy

Buildings and Surrounding Facility Improvements Lighting, HVAC, Fire, Security, Renewable Energy

Performance Infrastructure

- A Regulated Project Delivery Model
- 40 CFR 136, Part B Federal Energy Management and Planning Programs/Methods and Procedures for Energy Savings Performance Contracting.
- State of New Jersey Title 52 of the Revised Statutes
 - Energy Savings, and Energy and Water Conservation Measures are defined.

Performance Infrastructure

Elements

Benefits

- Mutually established energy and operations baseline
- Energy conservation, process efficiency, and renewable energy measures
- Savings (and other) support the improvements
- Well defined scope of work
- Training, and measurement and verification of savings

Guaranteed Savings and Results

Fixed price project

Single point accountability

Fast-track project completion

Significant local, energy, and environmental improvements

Performance Infrastructure -- Business Case Financials – Process and Energy Efficiency Improvement Projects – An Example

Business Case Summary		Measured Utility Savings		Non-measured Savings								_							
				Utility Savings		Operational Savings		Rebate		Capital Avoidance		Total Savings		Loan Payment		Performance Management		Balance	
1	Vear 7	¢	234 440	e	5 014	¢	150 251	¢		ł		¢	209 705	¢	209 705	¢	_	ŧ	
	Vear 0		234,440	₽ #	5,014		165,251	⊅ ¢t	-	⇒ ≁	-		396,705	⊅ dr	414 600			ф	
	rearo	P	243,772	P	5,215	P	105,021	\$	-	P	-	P	414,608	Þ	414,608	Þ	-	P	-
Performance	Year 9	\$	253,476	\$	5,424	\$	172,245	\$	-	\$	-	\$	431,145	\$	431,145	\$	-	\$	-
Years	Year 10	\$	263,568	\$	5,641	\$	179,135	\$	-	\$	-	\$	448,343	\$	448,343	\$	-	\$	-
	Year 11	\$	274,062	\$	5,866	\$	186,301	\$	-	\$	-	\$	466,228	\$	466,228	\$	-	\$	-
	Year 12	\$	284,974	\$	6,101	\$	193,753	\$	-	\$	-	\$	484,828	\$	484,828	\$	-	\$	-
	Year 13	\$	296,323	\$	6,345	\$	201,503	\$	-	\$	-	\$	504,170	\$	491,515	\$	-	\$	12,655
	Year 14	\$	308,124	\$	6,599	\$	209,563	\$	-	\$	-	\$	524,286	\$	491,515	\$	-	\$	32,771
	Year 15	\$	320,396	\$	6,863	\$	217,945	\$	-	\$	-	\$	545,204	\$	491,515	\$	-	\$	53,689
	Year 16	\$	333,158	\$	7,137	\$	226,663	\$	-	\$	-	\$	566,959	\$	491,515	\$	-	\$	75,444

Evansville IN -- Water Meters and WRRF Upgrades

- Approx. 64,000 water meters
- Biogas-to-energy with addition of FOG and CHP
- □ Primary clarification
- □ Sludge dewatering
- Engineering for additional energy and process efficiency measures, and
- Building facilities

Evansville IN -- Water Meters

Water Meters' upgrade:

- new, Water-meters
 5/8" and 1-8" size meters
- Advanced metering infrastructure (AMI)
- Automated leak detection system (ALDS)

> Annual, project benefit – approx. \$5MM

Evansville IN -- WRRF Upgrades

The 14MGD WWTP's electric spend – 1,593 kWh/MG
 FOG and biogas-to-energy CHP will meet approx. 50% energy requirements and will provide <u>supplemental-FOG-tipping-revenue</u>.
 This improvement will drive the plant toward net-zero.

Primary Clarification, and

□ Sludge Dewatering

[Ref. Based on JCI-internal info.]

EWSU FOG Program Benefits

- 472KW
- **3.9MM kWh**
- \$124k FOG tipping fees
- Net Savings = \$278k

Sludge Dewatering – Review of Pilot/Field Data

- Screw-press on raw PS+WAS, 2%feed, and 70%VS
 - 30-35%cake-solids; 97-99%⁺recovery; <500 mg/L filtrate-TSS
 - vs. existing centrifuge(s) at 22-30%cake-solids to landfill
 - Mannich vs. twice-emulsion for similar results
- Centrifuge on An.D PS+WAS, 1.2-1.5%feed, and 50-55%VS
 - 28-30%cake-solids;
 - vs. existing BFPs at 17-19%cake-solids to landfill
 - Existing dry-polymer use
 - Originally designed BFP as back-up, with a centrifuge addition
- Centrifuge on Raw PS+WAS, 0.5-2.7%feed, 30-78%VS
 - 20-38%cake-solids; 82-99%recovery; <500 mg/L centrate-TSS
 - vs. existing BFPs at 16-19%cake-solids to incineration
 - Tested with existing emulsion polymer

Raw PS+WAS Feed and VS versus Centrifuges' Cake-solids

Evansville IN: WRRF Upgrades

Biosolids Dewatering:

- Anaerobically digested biosolids
- BFPs to Centrifuge optimization
 18% to 28% cake-solids output
 Reduced wet-tonnage to landfilling
- Annual, project benefit approx. \$175k

Municipal Water & Wastewater Processing Costs

(some general information, as noticed)

- Second to the employees' salaries on the annual budgets of cities
 - More than 40% of that are energy costs
- Potable or Drinking Water Treatment -- \$2/1,000-gal (flow based) (USEPA)
- Wastewater treatment -- \$300/MG (10-100 MGD flow based) for energy and biosolids disposal . . . (unpublished data)
- projected, Advanced water and wastewater treatment costs both CapEx and OpEx are significantly high:
 - Water for example, usage of advanced systems for algal-bloom removal . . .
 - Wastewater for example, TN to 3.0 mg/L, TP \leq 0.1 mg/L

Atlantic County Utilities Authority (ACUA) – WRRF Operation & Management -- Notes

- 40-MGD, design capacity serving 14-municipalities
 - Inflows include: septage, leachate, and sludges
 - Preliminary, primary, secondary-ASP, disinfection, and ocean-outfall discharge
 - Solids thickening, centrifuge-dewatering, solids-incineration, and ashdisposal to landfill
- Renewable Energy Use Wind and solar-PV
 - Five (5), Wind-turbines -- 7.5 MW
 - Solar-PV 500 kW
 - Effective pricing at <\$0.10/kWh
- More than 60% of WRRF's energy needs were met by the renewables

Conclusions

- Current upkeep of the US municipal water infrastructure requires significant and immediate improvement measures, and the capital investment need is estimated at more than \$1-trillion.
- Energy and process optimization is critical at WRRFs.
- <u>Energy, chemical, and other allowable-savings</u> need to be identified and verified for effective operation of water infrastructure, and be part of maintaining the annual budgets.
- Performance infrastructure includes effective installation of required improvement measures, with <u>guaranteed</u> savings and performance.
- The <u>energy efficient and sustainable management of municipal water</u> <u>infrastructure</u> would be required, in a <u>life cycle to life</u> cycle manner.

Acknowledgments

- > NJWEA John J. Lagrosa 102nd Annual Conference Committee
- > American Academy of Environmental Engineers and Scientists[®]
- Clientele Johnson Controls
- Johnson Controls

Questions

Rao Chitikela <u>rao.chitikela@jci.com</u> (412) 310-9452

