Start-up and Optimization of Portable, Packaged Wastewater Treatment Units for Drill Sites in the Kingdom of Saudi Arabia

Vincent Shea, P.E., BCEE (ERM, Ewing, New Jersey, USA)

NJWEA 99th Annual Conference AAEES Workshop 12-16 May 2014

Contents

Project Background & Approach

Difficulties

- Health & Safety / Travel
- Instrumentation
- Equipment

Findings

- Identified Deficiencies
- Correcting Deficiencies
- Results

Summary

Drill Rigs 101

- Self-contained, "temporary" camps
- Support Facilities:
 - Office & Living Quarters
 - Bathrooms / Showers
 - Kitchen / Mess Hall
 - Laundry
- Everything Mobile
- Focused on Production
- Built on flat pads with bermed ponds for drilling fluids – and sanitary wastewater

Project Background

- Government of KSA issued a directive to drilling contractors to provide "treatment" of sanitary wastewater prior to discharge
 - Sustainable reuse/recharge of treated wastewater
 - California Title 22 discharge requirements for unrestricted reuse
 - Primary limit turbidity <2 NTU; additional secondary limits
 - Final chlorination to eliminate health risks
- ERM's client under contract to provide numerous portable, packaged wastewater treatment unit to drilling contractors

Project Background

- Upon initial deployment of demonstration units, significant operational problems arose
 - Frequently in "upset"
 - Multiple re-seedings with biomass
 - Could not reliably meet the <2 NTU requirement
 - Additional units could not be delivered until technology/design field-proven
- ERM provided in-field technical assistance for troubleshooting and system optimization by mobilizing an experienced wastewater engineer with operations experience from the US to KSA.

System Basics

- Moving Bed Bioreactor (MBBR) / Integrated Fixed-Film/Activated Sludge (IFAS)
 - Influent Equalization
 - Anoxic Tank
 - Aerobic Tank (dispersed media)
 - Clarifier
 - DynaDisc Filtration

- Chlorine Contact Chamber
- Air Blowers (aeration and sludge lift pumps)
- Waste Sludge Holding Compartment
- Set-up for chlorine (sodium hypochlorite) and alum addition
- No flow meters or instrumentation for process control monitoring
- No equipment or tools for general maintenance

The Portable, Packaged MBBR Units

The world's leading sustainability consultancy

MBBR Highlights

MBBR Process Benefits

- Higher "Effective" MLSS without Higher Clarifier Solids Loading
- Enhanced Nitrification
- Improved Process Stability
- Improved SVIs / Reduced Sludge Production
- MBBR Design Considerations
 - Primary Treatment
 - Aeration / Mixing
 - Media Mobility

8

Health & Safety/Difficulties

- Getting there (and back) is half the battle
 - Language / Culture
 - Basic Hygiene
 - Hostile Environment
 - Terrorism
- Lack of instrumentation and equipment.

Initial Observations

All critical system components in working order, but...

- Almost Complete Lack of Daily Maintenance
 - Inconsistent Flow Leading to:
 - Inconsistent "feeding" of Biomass
 - Frequent Overflows
 - Why?
 - Time Demands
 - Rotating Personnel/Lack of Continuity
 - Inexperience/Lack of Training
- Field Modifications
- Chemical additions wasting material & diverting attention

Initial Observations (continued)

- Frequent Flow Interruptions / Poor Flow Control
 - Bar Screen
 - Influent transfer valves 100% open
 - Blocked screen between anoxic/aerobic tanks (media migration)
 - Kitchen Grease
- Light brown, thin biomass; pin floc
 - Suggested "young" sludge age from continued difficulties
 - Poor settling characteristics
 - Clarifier solids carry-over
- Floating Cap in Clarifier
 - Denitrification in clarifier
 - Hardened with dust and heat
- 1 to 1.5 feet of dark sludge in clarifier, septic odor suggested inadequate recycle/wasting

Initial Response

- Postpone non-critical field modifications
- Reset system and grow stable biomass
 - Maintain forward flow
 - Increase Return Activated Sludge rate
- Overcome Lack of Maintenance
 - Set Basic Rules for Operation by Rig Personnel
 - Mandatory system inspections 4 times per day
 - Five <u>Simple</u> Steps
 - Clean Influent Bar Screens
 - Open/clear/reset influent flow valves
 - Check/skim clarifier
 - Turn off mixer in anoxic tank clear perforated plates
 - Waste sludge for ~10 minutes, then reset to recycle
 - Establish Rig Personnel Change-out/Handover Procedures

Tools for Optimization

- Hach Portable Hand-held Turbidity and Suspended Solids Instrument (by Client)
- Hach Portable pH/DO/Conductivity/ ORP Instrument
- Sludge Judge
- Other:
 - Screen cleaner squeegee on broom handle
 - Media removal Fine-mesh fish net on pole
 - Dip cup plastic beaker on pole with hose clamps
 - Settling Apparatus 1000 mL beaker
 - Sample containers triple-rinsed 5L bleach jugs
- Patience & Creativity

Monitoring Phase at AD-15

- After establishing/implementing 5 Rules for Basic Operation (and completing 1 field modification), began Monitoring Phase
- Monitored:
 - Estimate of flows; use of equalization
 - DO, pH & ORP for operational control
 - Sludge settling characteristics using jar test
 - Total Suspended Solids as estimate for biomass density
 - Turbidity for primary discharge limit
- Settings
 - Set and marked valves based on observed flow
 - Adjusted sludge wasting duration

Performance of AD-15 MBBR

Settling Test – Initial Results on 10/26/10

The world's leading sustainability consultancy

Performance of AD-15 MBBR

Settling Test – Results on 10/29/10 (morning)

The world's leading sustainability consultancy

16

Performance of AD-15 MBBR

Settling Test – Results on 10/29/10 (afternoon)

The world's leading sustainability consultancy

17

Performance of AD-15

Performance of AD-15

Further Performance Recommendations

- Documentation does not include basic health and safety information regarding working with sanitary wastewater.
- Each deployed MBBR unit should be equipped with basic tools for daily maintenance.
- Each MBBR unit should be posted with a laminated Normal Operations Guide (The 5 Rules). Link to photographs to aid in identifying the proper valve or tank.
- A flow meter or easily conducted field method for evaluating daily forward flow should be installed/implemented.
- On a periodic basis, an experienced person should evaluate system operations (field measurements, lab samples, microscopic, etc.).
- One chemical tote is located on a shelf well above waist height.
 Transferring chemicals into the tote is difficult and presents a safety issue.
- Chemical dosing lines should be rerun with unbroken lengths of tubing, instead of ferruled connections.

Summary

- In general, the MBBR units at AD-15 and N-236 were not being properly maintained prior to ERM's arrival in KSA.
- Forward flow was set to take full advantage of the equalization tank and provide a steady flow to downstream processes.
- 5 Basic Rules implemented to provide continuous flow.
- RAS changed from daily event (if ever) to a continuous recycle between 50 and 100% of the forward flow.
- Over a 9-day period, ERM personnel demonstrated that a quality effluent could be produced with minimal (<u>but not zero</u>) daily attention.
- Based on field testing, a 2 NTU daily average discharge limits is readily achievable <u>if</u> the MBBR units are operated properly.

Project Update / Questions

The world's leading sustainability consultancy