Microbial Ecology of Activated Sludge

Kartik Chandran Columbia University

NJWEA AAEES Workshop 100 Years of Activated Sludge May 12th, 2015

Nitrification is a principal step in biological nitrogen removal – increasingly mandated worldwide

Extant respirometry (oxygen uptake) for biokinetic estimation of nitrification

plus Y and b for each nitrification step via real-time assay optimization

Chandran and Smets, 2000a, 2000b, 2005, 2008

time (h)

Table I. Elements of the two-step nitrification model.^a

- Accurate descriptors of specific activity are only as good as estimates of target biomass concentration
 - Who is there and how many are there?
 - Challenging in mixed culture environment
 - Traditional lumped descriptors like TSS, VSS are inadequate

Implications of understanding microbial ecology How do process control responses differ?

Impaired reactor performance is translated into a reduction in "specific" activity

Reduction in μ_{max}

Impaired reactor performance is translated into a reduction in "active" NH₄⁺-N oxidizing biomass fraction

Reduction in X

Direct microbial abundance enabled estimation of biokinetics

- $Y_{ns} = 0.24 \text{ mg X COD} / \text{ N oxidized (Grady et al., 1999)}$
- $Y_{nb} = 0.1 \text{ mg X COD/N}$ oxidized (Chandran and Smets, 2000)
- mass of a bacterial cell: 2.8*10⁻¹³g/cell (Brock Biology of Microorganisms, 2005, 11th ed., Pearson)
- Cellular DNA content: 8.8*10⁻¹⁶g DNA/cell (Kindaichi *et al.*, 2006)
- one copy of 16S rRNA operon copy number per genome (Chain *et al.*, 2003, Starkenburg *et al.*, 2006)

Ahn *et al.,* , 2008

Parameter estimates

Parameter	AOB	NOB	Equation
μ _{max} (1/d)	2.83 ± 2.46	7.04 ± 5.18	$\mu_{\text{max}} = \frac{Y_{\text{true}}}{(1 - Y_{\text{true}})} * \frac{\begin{pmatrix} dO_2 \\ dt \end{pmatrix}_{\text{max}}}{X_{\text{AOB,NOBnb}}}$
Y _{net} (mg X COD/mg N oxidized)	0.15 ± 0.07	0.014 ± 0.007	$Y_{net} = \frac{X * \tau}{\theta_c * \Delta S}$
b (1/d)	0.37 ± 0.27	2.24 ± 1.25	$b = \frac{\frac{Y_{true}}{Y_{net}} - 1}{\theta_c}$

Impact on amoA expression

Nitrification specific activity measures strongly parallel gene expression measures

- Wastewater streams are often limited in readily biodegradable COD to remove N down to very low levels
- Therefore external carbon sources are widely used to enhance N removal
 - Different carbon sources have different rates and active fraction for denitrification
- Selection of the carbon source is thus, key for achieving target N goals
 WERF Nutrient Challenge Project (Baytshtok et al., 2008, 2009)

Who consumes which organic carbon source in engineered denitrification?

- Do same bacteria utilize all organic C- sources?
- What happens to community structure upon changing organic C-source?
- Implications for process modeling, design and optimization?

Organic carbon uptake during denitrification

Organic carbon uptake during denitrification

Tracking dominant methylotrophic populations in the SBR

- *Methyloversatilis* spp. more abundant than *Hyphomicrobium* spp.
- 'Relatively' stable during methanol feed phase

Baytshtok et al., Biotechnology and Bioengineering, 2009;102: 1527-1536

Phase I

Chandran5

Tracking dominant methylotrophic populations in the SBR

Phase I

Phase II

Survival of methylotrophic populations depended upon their nutritional modes

Slide 16

Chandran5 Need to show N-removal profiles?

Is it the community or activity lagging?

Mention that functional genomics is ongoing Prof. Kartik Chandran, 7/5/2010

C1 and C2: metabolic pathways

How about C-specific kinetics?

• mRNA concentrations of genes can be quantitative biomarkers of specific functional activities

- Can discard organism boundaries and focus on functional information
 engineering
- Allows quantitative tracking of specific rates in activated sludge

Lu et al., 2011 EM

Implications of activity on design

- Traditional batch tests not applicable to estimate μ_{max}
 - AOB, NOB, AMX all use NO_2^-
 - AOB and AMX use NH₃
 - Cannot infer anammox activity using NH₃ or NO₂⁻ depletion profiles

Estimates of activity from X_{amx} conc.

Park et al., 2010b, WR

• Combination of X_{amx} with steady state mass balances to estimate μ_{max}

 $\ln X_{amx} = \ln X_{amx,o} + \mu \times t \rightarrow \mu_{max} = 0.11-0.15 \text{ d}^{-1}, t_d = 5.3 \text{ days}$

• We don't want to rely on process upsets to estimate μ_{max}

Measures of anammox activity

- $t_d = 8.9 \text{ days}$
- Another utility of directly measuring X_{AMX}

Transcript abundance as an indicator of activity?

- Intergenic spacer region (ISR) between 16S rRNA and 23S rRNA has been used before to describe anammox activity (Schmid *et al.*, 2005)
 - ISR is not a biomarker of anammox reaction specific activity

• HZO (HAO)

- Structurally and functionally unique
- Reaction specific to anammox pathway

hzo and ISR based tracking of in-situ anammox activity

- Trends in fold expression relatively consistent for both *hzo* and ISR
- Conceptually, changes in molecular responses should 'precede' wholereactor changes
- Especially important in high SRT systems where performance upsets significantly lag biocatalyst activity

CAPPED SECTOR

 $\mathbf{0}_{2}$

Less N₂O

11

Less

Nr

NON-CAPPED SECTOR

The inventory in autotrophic AOB

MG Klotz & YL Stein. 2011. In: Nitrification. Ward, Arp & Klotz (Eds.), pp. 57-93.

The inventory in autotrophic AOB

Chemical Recovery Methane to bio-methanol

- Concomitant oxidation of CH₄ and CO₂ fixation
- Prospect of combining C &N cycles

Results – CANON Metagenome (suspension)

- Taxonomical analysis using; MG-RAST with Krona graph
- Nitrosomonas was confirmed dominant with 21% of total bacteria.

Results - CANON Metagenome (suspension)

NITROGEN METABOLISM : REDUCTION AND FIXATION

- Glimpse of 'potential' pathways existing (quantitative as well)
- Color intensity describes relative concentrations

The holy grail (for today)

- Individual molecular measures of activity
 - N-oxidation
 - C-oxidation
 - Multiple substrate oxidation by same bacteria
 - Gene expression can work for select reactions

Evolution in characterization of biochemical waste treatment processes

• Composition (Structure) + Activity (Biokinetic)

Contact information

Kartik Chandran

Associate Professor Director, Wastewater and Climate Change Program

Director, Columbia University Biomolecular **Environmental Sciences**

Email: <u>kc2288@columbia.edu</u>

Phone: (212) 854 9027

URL: www.columbia.edu/~kc2288/

