Ammonia Removal and Recovery During Food Waste Anaerobic Digestion Using Selective Membranes

Taylor Lenney¹, Stefan Grimberg²

1. Graduate Student, Institute for Sustainable Environment, Clarkson University, NY, USA

2. Professor, Civil and Environmental Engineering Department, Clarkson University, NY, USA

Clarkson UNIVERSITY defy convention

The Problem

- US: 38 million tons of FW, 5.1% diverted from landfills³
- Worldwide: 1/3 of all food for human consumption is wasted (2011 FAO)³
- With limited oxygen, water, sunlight, and organisms food waste in landfills decomposes very slowly

Solution: Anaerobic Digester

- Biogas: CH₄ & CO₂
- Effluent: High ammonia for fertilizer use

Clarkson's Anaerobic Digester

- Mesophilic two-phase pilot scale digester
- 30-60 day RT
- 300 lb/day loading (600 lb/day capacity)
- Biogas production is 30% higher than similar systems
- But can we do any better?

*K. Venkiteshwaran "Two-Stage Anaerobic Co-Digestion using crude glycerol or cheese whey with dairy manure to improve methane production"

Ammonia Toxicity

- Major cause of full-scale digester upset
 - Methanogens most susceptible
- Clarkson's food digester operates around 6 to 7 g/L TAN
- IWA-ADM1 model uses $I=1/1+s\downarrow I/K\downarrow I$ 4
 - su -ammonia concentration
 - *K*¹/₁ -inhibition parameter of ammonia
- Suggests that any ammonia concentration would result in some inhibition
- Removal of ammonia should increase in methane production

Relevance to Municipal WWTPs

- Ammonia toxicity not significant in conventional wastewater digesters
- Co-digestion gaining more prominence
- Food waste as a cosubstrate:
 - Easily degradable
 - High COD → High energy yields
- Ex: East Bay Mud, CA
 - 0.6 MGD (≤ 1% of their avg flow)
- Co-digestion of FW could lead to ammonia inhibition

Purpose & Objectives

- Ammonia is inhibitory 5-8
- Requires ammonia removal system to increase carbon recovery
- Ammonia loss may result in loss of effluent fertilizer potential
- Design an ammonia removal and *recovery* mechanism
 - Selective membranes

Vaneeckhaute et al., 2016

Anammox

- Autotrophic bacteria
- Oxidizes ammonium with nitrite to N₂ gas
- Implemented at several WWTPs
- Long start up times
- Lacks potential for recovery

Ward et al. (2011)

Struvite

- Magnesium ammonium phosphate (kidney stones)
- General Reaction: $Mg^{2+}+NH_4^++PO_4^{3-}+6H_2O \rightarrow MgNH_4PO_4^{-}6(H_2O)$
- Solubility increases with pH; (target 8.5)
- Used as slow release ammonia fertilizer
- Clarkson Digestate: 8 to 1 N:P

Air Stripping

- Physical transfer of NH₃ in the aqueous phase to gas phase
 - $NH\downarrow4\uparrow+(aq)\leftrightarrow NH\downarrow3(aq)+H\uparrow+$
 - $P\downarrow NH\downarrow 3 = H \cdot [NH\downarrow 3]$
 - pH dependent; requires elevated pH
 - *pK↓a* =9.25 @ *T*=298 *K*
- Usually coupled with an acid scrubber
- Ammonia salts generated can be used as fertilizer
- High energy inputs
- Clarkson's digestate: strongly buffered → high chemical inputs

Ukwuani et al. (2016)

Process Mechanims

Cation Exchange Membranes

- Selectively-permeable
- Molecular passage based on ionic charge
- Concentration gradient driven
- NH₄⁺ permeates through membrane
- Exchanging with cation (H + or K +)

Why?

Removal and Recovery

Experimental Methods: Membrane Test

- Nafion 117
- Pump and tubing set up
 - Flow rates: ~ 2 gpm each
- Leak/mixing test ~ 30 minutes
- Duration: 1-2 days
- Analysis: TN Analyzer, pH, 5 mL samples

Results: Membrane Test

Trial	Membrane	Ammonia-Rich Solution	Draw Solution Composition	Flux mol/d/m²
1 & 2	Nafion® 117	Ammonium Chloride NH₄Cl	Sulfuric Acid pH<2	92.0±8.5
3	Nafion® 117	Stage 2 Digestate Filtered	Sulfuric Acid pH<2	22.8±10.2
4 & 5	Nafion® 117	Stage 2 Digestate Unfiltered	Sulfuric Acid pH<2	14.3±1.04
6	Nafion® 117	Stage 2 Digestate Unfiltered	Potassium Sulfate K ₂ SO ₄	10.7±1.9
7	Neosepta® CMX	Stage 2 Digestate Unfiltered	Potassium Sulfate K ₂ SO ₄	3.71
8	Ultrex™ CMI-7000S	Stage 2 Digestate Unfiltered	Potassium Sulfate K ₂ SO ₄	11.2±8.8

Experimental Methods: BMP Test

- Nafion 117
- Leak/mixing test ~ overnight
- 2.1 L volumes
- Draw Solution:
 - 17,000 mg/L K+
 - 0.1M Phosphate buffer: pH 8
- Control and Membrane Cell digesters:
 - Pre-consumer FW from CU kitchens
 - Stage 2 Digestate
 - 1:1 ratio based on VS
- Methane measured using AMPTS II
- 6 mL samples collected once a day
 - TN, COD, pH
- Duration: 10-15 days

Methane

Results: BMP Test

Results

• ADM1 model uses $I=1/1+s\downarrow I/K\downarrow I$ 4

 $S \downarrow I$ -ammonia concentration $K \downarrow I$ -inhibition

parameter of ammonia

- Threshold model predicts methane rate constant below specific concentration^{6,7,10-15}
 - Threshold concentration: 650 ± 196 (95% C.I.) mg/L FAN
 - Threshold should be microbial culture dependent.

Results

Threshold model

 $I = 1; \qquad S_I < T_s$ $I = 1/1 + SI - Ts/K \downarrow I \qquad ;$ $> T_s$

- *S*↓*I* -ammonia concentration *K*↓*I* -inhibition parameter of ammonia
- T_s threshold concentration

Summary

- Membrane System has been operated for 2.5 months without significant flux decline
- Membrane system allowed for increased methane production at concentrations well above threshold concentration (650 ± 196 (95% C.I.) mg/L FAN for our seed culture from campus food digester).
- As expected at FAN concentrations close to threshold concentration no increased methane production was observed. Thus a membrane system would have limited value.
- Ammonia recovery in form of ammonium sulfate

Conclusions and Future Work

- Membrane easily achieves removal and recovery of ammonia
- The membrane system allows for blending ammonia with digester effluent to balance nutrient composition of effluent
- Threshold model may better describe ammonia inhibition for food waste digestate
- Further experimentation at higher FAN concentrations to confirm inhibition model
- Characterize digester microbial community
- Scale up for Clarkson's food digester system

Funding For This Research Has Been Provided by

References

- 1. (2014, February). Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2012. United States Environmental Protection Agency. Retrieved from https://archive.epa.gov/epawaste/nonhaz/municipal/web/pdf/ 2012_msw_fs.pdf
- 2. Retrieved from http://cswd.net/wp-content/uploads/2011/03/Ten-Year-Old-Carrots.pdf
- 3. Sustainable Management of Food. United States Environmental Protection Agency. Retrieved from https://www.epa.gov/ sustainable-management-food/sustainable-management-food-basics#what
- 4. Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. 2002. *Anaerobic digestion model no. 1*. London, UK: IWA Publishing.
- 5. Gerardi, M. (2003). *The Microbiology of Anaerobic Digesters*. Hoboken, New Jersey: Wiley-Interscience.
- 6. Rajagopal, R., Massé, D.I., and Singh, G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, **143**(0), 632-641.
- 7. Yenigün, O. and Demirel, B. 2013. Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901-911.
- 8. Chen, Y., Cheng, J.J., and Creamer, K.S. 2008. *Inhibition of anaerobic digestion process: A review*. Bioresource Technology, **99**(10), 4044-4064.
- 9. Vaneeckhaute, C., et al. 2016. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification, Waste Biomass Valor, **7**(4), 21-40.
- 10.Hansen, K.H., Angelidaki, I., Ahring, B. K. 1998. *Anaerobic Digestion of Swine Manure: Inhibition by Ammonia*. Water Research, **32**(1), 5-12.
- 11. Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S. 2012. *Trace element requirements for stable food waste digestion at elevated ammonia concentrations*, Bioresource Technology, 104: 127-135.
- 12. Mata-Alvarez, J., Macé, S., Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives, Bioresource Technology, **74**(1), 3-16.
- 13. Angelidaki, I., Ahring, B. K. (1993). *Thermophilic anaerobic digestion of livestock waste: the effect of ammonia,* Applied Microbiology and Biotechnology, **38**(4), 560-564.
- 14. Koster, I.W., Lettinga, G. (1988). Anaerobic digestion at extreme ammonia concentrations, Biological Wastes, 25(1), 51-59.
- 15. Bhattacharya, S.K., Parkin, G.F. (1989). *The effect of ammonia on methane fermentation processes*, J. Wat. Pollut. Fed., 61:55-59.
- 16. Ward, B. B., et al. (2011): What's New in the Nitrogen Cycle?, Oceanography, 20, 101-109.