Ammonia Removal and Recovery During Food
Waste Anaerobic Digestion Using Selective
Membranes

Taylor Lenney’, Stefan Grimberg?

1. Graduate Student, Institute for Sustainable Environment, Clarkson University, NY,
USA
2. Professor, Civil and Environmental Engineering Department, Clarkson University,

NY, USA

Clarkson
UNIVERSITY

defy convention®



The Problem

* US: 38 million tons of FW, 5.1%
diverted from landfills®

« Worldwide: 1/3 of all food for human Rubber, leather Other 4.3%
consumption is wasted (2011 FAQ)3 gy

Food waste

« With limited oxygen, water, sunlight, 21.1%
and organisms food waste in landfills

decomposes very slowly

Paper & paperboard
14.8%

Yard trimmings
8.7%

Plastics

17.6% Metals

Glass 9.0%
5.1%

10 year old carrots?



Solution: Anaerobic Digester

* Biogas: CH, & CO,
e Effluent: High ammonia for fertilizer use

Biogas Systems
The Basics

organic materlal
(eg., animal waste,
food waste, agricultural
waste, wastewater sludge) heat

co-products
(e.g., livestock bedding, compost,
fertilizer, nutirents)

www.americanbiogasouncil.org



Clarkson’s Anaerobic Digester

Mesophilic two-phase pilot scale digester

30-60 day RT

300 Ib/day loading (600 Ib/day capacity)

Biogas production is 30% higher than similar
systems

But can we do any better?
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Ammonia Toxicity

* Major cause of full-scale digester
upset
* Methanogens most susceptible
* Clarkson’s food digester
operates around 6 to 7 g/L TAN
* I[WA-ADM1 model uses
[=1/1+5ll /KU 4
- su/ -ammonia concentration
. &/ -inhibition parameter of
ammonia
e Suggests that any ammonia
concentration would result in
some inhibition
* Removal of ammonia should
increase in methane production
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Relevance to Municipal WWTPs

« Ammonia toxicity not

significant in conventional Food Waste bk Dedicated

, T Preprocessing :
wastewater digesters Ll Faiiy o Dewatering

- Co-digestion gaining more EBMUD Facilty

prominence Food Waste

* Food waste as a co-
substrate:
 Easily degradable
« High COD - High energy
yields
« Ex: East Bay Mud, CA

* 0.6 MGD (= 1% of their avg
flow)

- Co-digestion of FW could Renewable Electricity Renzv;:b(I;NNé)tural Organic Compost

lead to ammonia inhibition Transportation Fuel



Purpose & Objectives

« Ammonia is inhibitory>2

» Requires ammonia removal
system to increase carbon
recovery

« Ammonia loss may result in loss
of effluent fertilizer potential

* Design an ammonia removal
and recovery mechanism

» Selective membranes
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Thermal drying Biological nitrification-
Air e
denitrification
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Vaneeckhaute et al., 2016



Anammox
I

 Autotrophic bacteria

* Oxidizes ammonium with
nitrite to N, gas

* Implemented at several denitrification
WWTPs

* Long start up times
 Lacks potential for recovery

Nitrification

assimilation
Anammox
NH, NO, — N, + 2H,0
4

l T ammonification

Nitrogen fixation

Organic N

Ward et al. (2011)



Struvite

* Magnesium ammonium phosphate
(kidney stones)

« General Reaction:
Mg?*+NH,*+PO3+6H,0 — MgNH,PO,-6(H,0)

 Solubility increases with pH; (target 8.5)
» Used as slow release ammonia fertilizer
 Clarkson Digestate: 8 to 1 N:P

magnesium
OS5 (MgP O ©

O  effluent

urine ¥ Struvite© ©



Air Stripping

 Physical transfer of NH; in the
aqueous phase to gas phase

o NHIAT+ (ag)o NHI3 (ag)+
HT+

« PINHI3 =H [NHI3 ]

* pH dependent; requires
elevated pH

. pKla=9.25@ 7=298 X

* Usually coupled with an acid
scrubber

* Ammonia salts generated can
be used as fertilizer

* High energy inputs

* Clarkson’s digestate: strongly
buffered - high chemical
inputs
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Ukwuani et al. (2016)
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Process Mechanims

Cation Exchange Membranes

» Selectively-permeable

* Molecular passage based on ionic
charge

« Concentration gradient driven

« NH,* permeates through
membrane

« Exchanging with cation (H* or K+)
Why?
 Removal and Recovery

High NH*
Concentration

“ @

Low NH,*
Concentration

&

Perfectly
Permselective
Cation Exchange
Membrane (CEM)

anion diffusion
cannotoccurthrough
the membrane

Concentration-driven

>



Experimental Methods: Membrane Test

* Nafion 117

* Pump and tubing set up
* Flow rates: ~ 2 gpm each

 Leak/mixing test ~ 30 minutes

 Duration: 1-2 days

« Analysis: TN Analyzer, pH, 5 mL
samples




Results: Membrane Test

Trial Membrane Ammonia-Rich Draw Solution Flux
Solution Composition mol/d/m?

Ammonium Sulfuric Acid
Nafion® 117 Chloride H<o 92.0+8.5
NH,CI P
Nafion® 117 Stage 2 Digestate Sulfuric Acid 59 8410.2
Filtered pH<2
: Stage 2 Digestate Sulfuric Acid
Nafion® 117 Unfiltered pH<2 14.3+1.04
. Potassium
Nafion® 117 Sl 2. DUEEBIENE Sulfate 10.7+1.9
Unfiltered
K,SO,
: Potassium
Neosepta® CMX S 2. BIEEEIEIE Sulfate 3.71
Unfiltered
K,SO,
: Potassium
Ultrex™ Stage 2 Digestate Sulfate 11.0+8.8
CMI-7000S Unfiltered A

K,SO,




Experimental Methods: BMP Test

Methane
Measurement

* Nafion 117
* Leak/mixing test ~ overnight Biogas
« 2.1 Lvolumes
) Dl’aW SOIUtiOn: Digester | Digester

* 17,000 mg/L K+ 1 )
* 0.1M Phosphate buffer: pH 8

= Control and Membrane Cell
digesters:

* Pre-consumer FW from CU
kitchens

 Stage 2 Digestate
* 1:1 ratio based on VS

* Methane measured using AMPTS Il

« 6 mL samples collected once a day
« TN, COD, pH

 Duration: 10-15 days




Results: BMP Test

(O8]

(mL CHy/g VsS/day)
(\9]

Net Generation

FAN: 1.49 FAN: 0.94 FAN: 0.84
to 0.68 (g/ to 0.76 (g/ to 0.65 (g/
L) L) L)

2 3

Experiment Number

1 Membrane
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Results

« ADM1 model uses
I=1/1+si/ /Kl 4
S/ -ammonia
concentration
AU/ -inhibition
parameter of ammonia
« Threshold model
predicts methane rate
constant below specific
concentration®.7.10-15
« Threshold
concentration: 650 +

196 (95% C.I.) mg/L
FAN

 Threshold should be
microbial culture
dependent.

Net Methane Production Rate [mL CH,/gVS/d]
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Results

 Threshold model

[=1; S, <T,
=1 /1+S/-Ts/K
>T,

SU/ -ammonia concentration

KU/ -inhibition parameter of
ammonia

T, — threshold concentration

5

Net Methane Produsio ?faferfnqﬁcéﬁﬂ}é@gld'?'- CH,/g COD/hr]

FAN [mg/L]

[ J
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Summary

 Membrane System has been
operated for 2.5 months without

significant flux decline
AirRecycle

* Membrane system allowed for
increased methane production at
concentrations well above threshold | ¢ ¢ s
concentration (650 + 196 (95% C.1.) Traps
mg/L FAN for our seed culture from
campus food digester).

» As expected at FAN concentrations
close to threshold concentration no
increased methane production was
observed. Thus a membrane
system would have limited value.

« Ammonia recovery in form of
ammonium sulfate

NH,
gas

Methane
Measurement

Biogas ‘




Conclusions and Future Work

 Membrane easily achieves removal and recovery of ammonia

* The membrane system allows for blending ammonia with digester effluent to
balance nutrient composition of effluent

* Threshold model may better describe ammonia inhibition for food waste
digestate

* Further experimentation at higher FAN concentrations to confirm inhibition
model

e Characterize digester microbial community

 Scale up for Clarkson’s food digester system
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