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•  US: 38 million tons of FW, 5.1% 
diverted from landfills3

•  Worldwide: 1/3 of all food for human 
consumption is wasted (2011 FAO)3

•  With limited oxygen, water, sunlight, 
and organisms food waste in landfills 
decomposes very slowly 

10	year	old	carrots2	

The Problem



•  Biogas:	CH4	&	CO2	

•  Effluent:	High	ammonia	for	fer?lizer	use	

Solution: Anaerobic Digester



•  Mesophilic	two-phase	pilot	scale	digester	
•  30-60	day	RT	
•  300	lb/day	loading	(600	lb/day	capacity)	
•  Biogas	produc?on	is	30%	higher	than	similar	
systems	
•  But	can	we	do	any	beNer?	

*K.	Venkiteshwaran	“Two-Stage	Anaerobic	Co-Diges?on	
using	crude	glycerol	or	cheese	whey	with	dairy	manure	to	
improve	methane	produc?on”	

Clarkson’s Anaerobic Digester



•  Major	cause	of	full-scale	digester	
upset	
•  Methanogens	most	suscep?ble	

•  Clarkson’s	food	digester	
operates	around	6	to	7	g/L	TAN		

•  IWA-ADM1	model	uses	
𝐼= 1/1+ 𝑠↓𝐼 /𝐾↓𝐼     4	

•  𝑆↓𝐼 	-ammonia	concentra?on	
•  𝐾↓𝐼  -inhibi?on	parameter	of	
ammonia	

•  Suggests	that	any	ammonia	
concentra?on	would	result	in	
some	inhibi?on	
•  Removal	of	ammonia	should	
increase	in	methane	produc?on	

Ammonia Toxicity



•  Ammonia toxicity not 
significant in conventional 
wastewater digesters
•  Co-digestion gaining more 

prominence
•  Food waste as a co-

substrate:
•  Easily degradable
•  High COD à High energy 

yields
•  Ex: East Bay Mud, CA

•  0.6 MGD (≤ 1% of their avg 
flow)

•  Co-digestion of FW could 
lead to ammonia inhibition 

Relevance to Municipal WWTPs



Purpose & Objectives

•  Ammonia is inhibitory5-8

•  Requires ammonia removal 
system to increase carbon 
recovery
•  Ammonia loss may result in loss 

of effluent fertilizer potential 
•  Design an ammonia removal 

and recovery mechanism 
•  Selective membranes

Vaneeckhaute	et	al.,	2016	



Anammox

•  Autotrophic bacteria
•  Oxidizes ammonium with 

nitrite to N2 gas
•  Implemented at several 

WWTPs
•  Long start up times
•  Lacks potential for recovery

Ward	et	al.	(2011)	



Struvite

•  Magnesium ammonium phosphate  
(kidney stones)

•  General Reaction:  
Mg2++NH4

++PO4
3-+6H2O ⟶ MgNH4PO4・6(H20)

•  Solubility increases with pH; (target 8.5)
•  Used as slow release ammonia fertilizer
•  Clarkson Digestate: 8 to 1 N:P



Air Stripping

•  Physical transfer of NH3 in the 
aqueous phase to gas phase
•  𝑁𝐻↓4↑+ (𝑎𝑞)↔ 𝑁𝐻↓3 (𝑎𝑞)+ 

𝐻↑+ 
•  𝑃↓𝑁𝐻↓3  =𝐻 ∙[𝑁𝐻↓3 ]
•  pH dependent; requires 

elevated pH
•  𝑝𝐾↓𝑎 =9.25 @ 𝑇=298 𝐾

• Usually	coupled	with	an	acid	
scrubber	
• Ammonia	salts	generated	can	
be	used	as	fer?lizer	
•  	High	energy	inputs	
• Clarkson’s	digestate:	strongly	
buffered	à	high	chemical	
inputs	

Ukwuani	et	al.	(2016)	





Process Mechanims

Cation Exchange Membranes

•  Selectively-permeable
•  Molecular passage based on ionic 

charge
•  Concentration gradient driven 
•  NH4

+ permeates through 
membrane

•  Exchanging with cation (H + or K +) 
Why?
•  Removal and Recovery



•  Nafion 117
•  Pump and tubing set up
•  Flow rates: ~ 2 gpm each

•  Leak/mixing test ~ 30 minutes
•  Duration: 1-2 days
•  Analysis: TN Analyzer, pH, 5 mL 

samples

Experimental Methods: Membrane Test



Results: Membrane Test

Trial Membrane Ammonia-Rich 
Solution

Draw Solution 
Composition

Flux 
mol/d/m2

1 & 2 Nafion® 117
Ammonium 

Chloride 
NH4Cl

Sulfuric Acid 
pH<2 92.0±8.5

3 Nafion® 117 Stage 2 Digestate
Filtered

Sulfuric Acid 
pH<2 22.8±10.2

4 & 5 Nafion® 117 Stage 2 Digestate 
Unfiltered

Sulfuric Acid 
pH<2 14.3±1.04

6 Nafion® 117 Stage 2 Digestate 
Unfiltered

Potassium 
Sulfate
K2SO4

10.7±1.9

7 Neosepta® CMX Stage 2 Digestate 
Unfiltered

Potassium 
Sulfate
K2SO4

3.71

8 Ultrex™ 
CMI-7000S

Stage 2 Digestate 
Unfiltered

Potassium 
Sulfate
K2SO4

11.2±8.8



•  Nafion 117
•  Leak/mixing test ~  overnight
•  2.1 L volumes
•  Draw Solution:
•  17,000 mg/L K+
•  0.1M Phosphate buffer: pH 8

§  Control and Membrane Cell 
digesters:
•  Pre-consumer FW from CU 

kitchens
•  Stage 2 Digestate
•  1:1 ratio based on VS 

•  Methane measured using AMPTS II
•  6 mL samples collected once a day 
•  TN, COD, pH

•  Duration: 10-15 days

Experimental Methods: BMP Test



Results: BMP Test
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Results
•  ADM1 model uses
𝐼= 1/1+ 𝑠↓𝐼 /𝐾↓𝐼     4

𝑆↓𝐼  -ammonia 
concentration
𝐾↓𝐼  -inhibition 
parameter of ammonia

•  Threshold model 
predicts methane rate 
constant below specific 
concentration6,7,10-15

•  Threshold 
concentration: 650 ± 
196 (95% C.I.) mg/L 
FAN

•  Threshold should be 
microbial culture 
dependent.
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Results

•  Threshold model 
I = 1 ;  SI < Ts

𝐼= 1/1+ 𝑆𝐼−𝑇𝑠/𝐾↓𝐼     ; SI 
> Ts

𝑆↓𝐼  -ammonia concentration
𝐾↓𝐼  -inhibition parameter of 
ammonia
Ts – threshold concentration
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Summary

•  Membrane System has been 
operated for 2.5 months without 
significant flux decline

•  Membrane system allowed for 
increased methane production at 
concentrations well above threshold 
concentration (650 ± 196 (95% C.I.) 
mg/L FAN for our seed culture from 
campus food digester).
•  As expected at FAN concentrations 

close to threshold concentration no 
increased methane production was 
observed.  Thus a membrane 
system would have limited value.

•  Ammonia recovery in form of 
ammonium sulfate



Conclusions and Future Work

•  Membrane	easily	achieves	removal	and	recovery	of	ammonia	
•  The	membrane	system	allows	for	blending	ammonia	with	digester	effluent	to	
balance	nutrient	composi?on	of	effluent	
•  Threshold	model	may	beNer	describe	ammonia	inhibi?on	for	food	waste	
digestate		
•  Further	experimenta?on	at	higher	FAN	concentra?ons	to	confirm	inhibi?on	
model	
•  Characterize	digester	microbial	community		
•  Scale	up	for	Clarkson’s	food	digester	system	
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