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The Ng Lab at Pitt:
Legacy and Emerging Chemicals
in Human-Environment Systems

Organisms
as Reactors

Molecular
Models

Human Exposure
via Food

Regional Contamination, 
Near and Far

• Organism models 
used to predict 
tissue distribution 
of chemicals.

• Guide who and how 
to sample to 
protect ecosystems.

• Understanding 
toxicity and 
remediation for 
degradation of 
“forever 
chemicals” (PFAS).

• PFAS in seafood 
and packaged 
foods.

• Pesticides, POPs, 
veterinary drugs in 
wild and farmed 
seafood.

• Sudden and chronic 
chemical releases in 
McKeesport, East 
Palestine, and Beaver 
County.

• Collaborative sampling in 
Ghana and Suriname.
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PFAS: Globally distributed… and global toxicants?

Existing studies on PFAS show effects on a multitude of organ systems.

PFAS are known to disrupt fetal 
development, cause liver damage and 
increase circulating cholesterol.

The IARC recently classified PFOA as 
carcinogenic to humans, and PFOS as 
possibly carcinogenic to humans.

Other effects with lower certainty 
show differing results across studies 
or between humans and animals.

The compilation of this information 
has taken decades.
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Ahrens et al. 2009: seals
Robuck et al. 2021: Cape Fear River Estuary birds.

Patterns of PFAS distribution in different species show:
• Specificity (preference for specific tissues/components)
• Selectivity (different patterns for different PFAS).

Tissue distribution observations drive theories:
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perfluorooctanoic 
acid (PFOA) octanoic acid 

Fatty acid carriers in 
the body, e.g.
serum albumin, liver 
fatty acid binding 
protein, bind PFAS.

Organic anion transport 
proteins and 
polypeptides in the liver, 
kidneys, … ?, mediate 
elimination rates.

Nigam et al. 2015 Physiol Rev

Some PFAS are strong surfactants:

What can PFAS molecular interactions tell us?
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But: still many known and unknown unknowns

Most (>86%) toxicity studies have focused on only two PFAS: 
PFOA and PFOS. <15% addressed the thousands of other PFAS.

Cell viability, endocrine, reproductive and metabolism effects 
were the most frequently studied endpoints.

Wee and Aris, npj Clean Water 2023
Wang et al., Science Advances 2024

Retrospective analysis 
illustrates that humans, 

wildlife and the environment 
are exposed to many 

previously unreported PFAS, 
with no toxicity data and no 

standards available to 
enable laboratory testing.
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(Why) do PFAS bioaccumulate?

(Why) do they have preferential tissue distribution?

How does this impact toxicity?

?
?

?

?

Key questions drive our integrative approaches:
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Traditional (KOW-based) metrics fall short.

𝐾!"##$%&'($")
= K*+𝑓,- + K.+𝑓.+ + K.*𝑓.*
+ K'*𝑓'*

SP, structural protein
FP, functional protein
SL, storage lipid
PL, phospholipid

DOSE Ruiwen Chen

https://commons.wikimedia.org/wiki/File:2702_Fluid_Comp
artments_ICF_ECF.jpg

Goal: Move from 2-phase 
partitioning to multi-phase 
distribution.
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In vitro assays to explore PFAS “partitioning”

Ruiwen Chen

10Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91



Equilibrium dialysis for protein-PFAS 
interactions (HSA) and SSLM assay (Transil 
assay) for PFAS-phospholipid interactions.

Dialysis membrane with
molecular weight cutoff 
(MWCO) smaller than protein.

Protein and PFAS in
buffer; protein restricted
to 100μL volume within
dialysis cup.

PFAS in buffer can diffuse
across dialysis membrane
to reach equilibrium between
bound and unbound fraction.

Protein and PFAS equilibrate on rocker overnight.
Dialysate (PFAS outside of dialysis cup and protein 
are separated and shipped to OSU for analysis.

Parsing out drivers of tissue distribution

SP, structural protein
FP, functional protein
SL, storage lipid
PL, phospholipid

𝐾/"##$%&0($") = K*+𝑓,- + K.+𝑓.+ + K.*𝑓.* + K'*𝑓'*
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Parsing out drivers of tissue distribution

SP, structural protein
FP, functional protein
SL, storage lipid
PL, phospholipid

𝐾/"##$%&0($") = K*+𝑓,- + K.+𝑓.+ + K.*𝑓.* + K'*𝑓'*

Measuring the SSLM (PL=phospohlipid) part in vitro:

𝐾!" =
𝐶#$%&,!
𝐶#$%&,"

=
4(𝐶()*+, − 𝐶#$%&," 7 𝑉"

𝐶#$%&," 7 𝑀#-

Measuring the HSA (FP=functional protein) part in vitro:

Note: for very hydrophobic PFAS, needed to account for 
sorption to assay surfaces!

12More complicated!



Results: Some PFAS prefer membranes
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For per- and polyfluoroalkyl carboxylic acids, our 
results generally agree with and extend the 
foundational datasets generated by Stephen Droge 
( https://pubs.acs.org/doi/10.1021/acs.est.8b05052, 
https://pubs.rsc.org/en/content/articlelanding/2021/e
m/d1em00327e).

We found an increase of 0.36 ± 0.01 in KMW per FC.

PFCAs and FTCAs generally increase with chain 
length, though n:2 FTCAs and FTUCAs are on a 
different intercept.

No such relationship observed for ether carboxylic 
acids (PFECAs).

Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91

https://pubs.acs.org/doi/10.1021/acs.est.8b05052
https://pubs.rsc.org/en/content/articlelanding/2021/em/d1em00327e
https://pubs.rsc.org/en/content/articlelanding/2021/em/d1em00327e


Results: Some PFAS prefer membranes
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Greater diversity of groups represented within the 
sulfonates, but slopes are consistent: 
We see a 0.37± 0.02 log-unit increase per FC.

Sulfonamides and fluorotelomers fall at lower end 
of intercepts, suggesting effect of lower surface 
activity on membrane interactions.

Among C8 sulfonates, PFOS has the highest KMW 
whereas the cyclic PFEtCHxS has the lowest.

Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91



Results: Some PFAS prefer membranes

15Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91

For other groups, too few data points across FCs 
for clear relationships.

DiPAPs show high KMW due to large number of FC 
groups.

8:2 diPAP



Proteins: HSA interactions are more variable

Across all chain lengths: Focus on “C8” baseline:

16Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91

PFOS has the highest affinity for HSA across all 
groups and chain lengths (including longer-chain 
sulfonates) for the well-represented groups.

Addition of chlorine increases PFOS affinity for 
HSA (as seen also for the chloro-fluoro ether).



Docking has limitations for long chain lengths:

17Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91

Good agreement for log KA < 6 No clear relationship with binding site.



• No strong correlation between 
membrane (KMLW) and protein(KA for 
HSA) binding.

• Suggests different mechanisms and 
influence of chain length/structural 
features at play.

• This is good news! These are 
complementary, not redundant data.
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Proteins and phospholipids: complementary data.
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• Distribution of PFAS 
between free and 
bound phases: larger 
effect of “exposure 
concentration” on HSA 
than membrane 
binding.

• What are the 
implications for 
occupational 
exposure and typical 
toxicity experiments?

Non-saturable partitioning meets saturable binding:

19Chen et al. Environ. Sci. Technol. 2025, 59, 1, 82–91



• Consistent relationship between increase in KMW and fluorinated carbons (~0.36 
log units per additional FC). [slope of curve]

• Intercepts make the difference across functional groups and types (e.g. why 
sulfonates have higher KMW than carboxylates for the same # of FC).

• HSA is different-- both in terms of chain length relationship and saturability.
• For chain length and functional group, there appears to be a “sweet spot” (i.e. 

PFOS) for maximum affinity.

• Need to consider the interplay of membrane and protein interactions and 
the influence of exposure dose!

• But what does this mean beyond distribution: what is the toxic effect?

Take-homes from membrane and HSA assays:
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Approach: Generate data in silico to rank many PFAS.

Problem: We lack data on most PFAS, for many proteins!

Using interactions to categorize hazard: Molecular Screening

21

Molecular interactions (e.g. MIEs) can inform toxic mechanisms for chemicals.



Case study: PFAS used in photolithography.

Cao & Ng, J HazMat, Accepted

Yuexin Cao
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Building the screening dataset

23

We identified 221 photolithography-relevant PFAS uses in 7 photolithography processes (including 16 
specific applications) and 15 PFAS structural types (please see our SI for full list!) .
96 PFAS were selected for modeling.

Cao & Ng, J HazMat, Accepted



Building the screening dataset
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We targeted 5 receptors relevant to bioaccumulation and toxicity of PFAS and modeled 
them across 4 species to compare model organisms to humans.

Proteins ID in Protein Data Bank or entry identifier in UniProt

Human (Homo 
sapiens)

Rat (Rattus 
norvegicus)

Mouse (Mus 
musculus)

Zebrafish (Danio 
rerio)

Liver fatty acid binding protein 
(LFABP)

3STM 1LFO P12710* Q1AMT3*# & 
2QO4#

Serum albumin (SA) 4L8U P02770* P07724* -

Peroxisome proliferator activated 
receptor 𝛼 (PPAR𝛼)

6LXA P37230* P23204* A6XMH7*

Peroxisome proliferator activated 
receptor γ (PPARγ)

6MS7 O88275* P37238* A6XMH6*

Transthyretin (TTR) 4KY2^ 1KGI P07309*^ B8JLL8*^

Cao & Ng, J HazMat, Accepted



Balancing accuracy and efficiency: Relaxed Complex Scheme

25
Cao & Ng, J HazMat, Accepted



Validation of Relaxed Complex Scheme
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Validation focused on PFAS and 
receptors with most experimental 
data available, comparing the RCS 
with docking alone.



Validation of Relaxed Complex Scheme
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RCS improves both relative and absolute accuracy of binding affinity predictions, while 
maintaining reasonable computational efficiency.



Can we use interactions to categorize hazard?
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Different groups show 
different levels of 
affinity, often related to 
chain length, which 
varies across groups.

Note horizontal line is 
predicted affinity of our 
benchmark chemical 
PFOS.

A notable outlier: side-
chain fluorinated 
aromatics (SCFAs).



Can we use interactions to categorize hazard?
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High affinity PFAS are dominated by 
molecules with many CF groups as well 
as aromatic PFAS and one cyclic PFAS.

Higher affinity for these PFAS are 
observed across the modeled human 
receptors except for LFABP– potential 
limitation of binding pocket size?

These are largely untested PFAS, most 
without standards available to carry 
out experimental assays, but warrant 
prioritization.



Observations for linear vs. cyclic PFAS within groups
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Can we use binding sites to categorize hazard?
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Top row: active sites of (A) LFABP, (B) 
HSA, (C) PPAR a, (D) PPAR g, (E) TTR.

Middle row: Binding positions of 
strongly-binding PFAS.

Bottom row: Binding positions of 
weakly-binding PFAS.



What molecular simulations can and can’t do:

Predicted protein binding affinities were influenced by PFAS structural features:
fluorinated chain length, molecular size, and the presence of aromatic rings

Also affected by the dimensions of the protein binding pockets (e.g. limitations 
in LFABP). 

Notably, 22 PFAS were predicted to bind more strongly than PFOS, suggesting 
their potential for bioaccumulation and adverse biological effects.

Needs to be further validated with outcomes of protein binding – only one 
component in a complex cascade!
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Some take-home messages for PFAS

• There remain a large number of untested PFAS across many categories of 
use (and subsequent human exposure).

• Modeling strategies allow us to increase throughput on PFAS evaluation, 
but are not a panacea.

• Require data for training, validation, and evaluation.
• Combining insights from in vitro and in silico approaches can help to fill 

these gaps and prioritize chemicals for further study while avoiding animal 
use.

• In the meantime, treatment and destruction technologies are urgently 
needed, both inside and outside the box.
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Would you like to attend our next event?  
We have several webinars happening in the near future. Go to https://www.aaees.org/events to reserve your 
spot.

Would you like to watch this event again? 
A recording of today’s event will be available on our website in a few weeks. 

Need a PDH Certificate? 
Board Certified Individuals will be emailed a PDH Certificate for attending this event within the next week.

Questions?  
Email Marisa Waterman at mwaterman@aaees.org with any questions you may have. 

Thank you for attending our event today. 

https://www.aaees.org/events
mailto:mwaterman@aaees.org

