Thank you to our Patrons

We will begin our presentation in a few minutes...

Smoldering Treatment of PFAS: Field Demonstration

David Major, Ph.D., BCES

- Introduction to Smoldering
- Smoldering PFAS
- Lab/Pilot Testing
- Other PFAS Projects

Smoldering Combustion

savronsolutions.com _____

Smoldering Combustion of PFAS

Full scale systems implemented at sites around the world for treating hydrocarbon-impacted soils and sludges

SERDP Project

Column Design

Novel experimental design employed for detailed emissions analysis

Lab Column Tests

- 8 column tests utilizing PFOS-spiked GAC in Sand (or Sand + CaO)
- Self-sustaining smoldering achieved in all experiments

Test No.	GAC Concentration (mg GAC/kg sand)	Air Flux (cm/s)	CaO Concentration (g CaO/kg sand)	Average Peak Temperature (° C)	Smoldering Velocity (cm/min)	
B-1	50.0	2.5	-	940 ± 51	0.33 ± 0.04	
B-2	50.0	2.5	-	887 ± 22	0.40 ± 0.04	Base
B-3	50.0	2.5	-	908 ± 34	0.37 ± 0.10	Cases
B-4	50.0	2.5	-	$834 \pm 35^{*}$	0.37 ± 0.04	Stoom
S-1	50.0	2.5	-	935 ± 51	0.37 ± 0.20	
Ca-1	50.0	2.5	50	795 ± 37	0.31 ± 0.08	
Ca-2	50.0	2.5	20	869 ± 16	0.36 ± 0.07	L Calcium
Ca-3	50.0	2.5	10	900 ± 62	0.36 ± 0.03	Oxide

*Lower temperatures in B-4 likely due to deteriorating column insulation

6

Flourine Mass Balance – Base Case

Fluorine mass balance for base case tests (50 g/kg GAC) found significant F **Total Fluorine (PIGE)** in emissions as HF Includes inorganic F All Targeted PFAS <LOQ 4.1% HF in emissions from burnout tests 1.1% F in post-treatment sand >75% Destruction to HF 21.9% Other F in emissions (EPA Method 26) **Total Fluorine (PIGE)** Includes HF captured in sorption tubes 72.8% HF in emissions 0.08% PFAS in emissions Targeted PFAS (Method 8327) 68 – 109% Fluorine Mass Balance

CaO Amendment Optimization

Calcium oxide used to improve PFAS destruction and minimize byproducts in emissions

 $PFAS \xrightarrow{HEAT} HF + shorter chain compounds$

savronsolutions.com _

(Wang et al., 2011, 2013, 2015)

Lab Column Results

Key Takeaways

- Targeted PFAS Analytes: >99.9% reduction in detectable PFAS in all instances
- PIGE Spectroscopy
 - 95.6 >99.9% reduction in instances without CaO amendments
 - No significant change in total F concentration where CaO amendments were employed

Lab Column XRD Results

XRD Analysis – Tracking CaO Transformation to CaF₂

Flourine Mass Balance- CaO Addition

Lab Column Results Key Results

Achieved Smoldering Temperatures

>900°C GAC at 40-60 g/kg soil

Targeted PFAS Analytes:

>99.9% reduction, and below detectation limits

PIGE Spectroscopy

- 95.6 >99.9% reduction of F mass in instances without CaO amendments
- No change of F mass with CaO (HF sequestered as CaF₂)

Emissions

- <0.02 0.13% of initial F mass, lower with CaO soil amendment</p>
- Consistent with *less HF and shorter chain compounds* produced

Mass Balance (F)

- 68-109%, *without* CaO
- 80-128% *with* CaO

SERDP Project

savronsolutions.com _____

STARx: Soil and/or Waste GAC Treatment

Pilot Test Set Up

Mixing / Loading

Unloading

Air Emission Sampling

Results

		Pilot Test 2						
Analytical	Total PFAS Pre-Treatmen	re-Treatment Total PFAS Post-		Total PFAS Pre-Treatment		Total PFAS Post-		
Method	(ppb)	Treatment (ppb)	%	(ppl	b)	Treatment (ppb)		% Pamourad
	Average Std Dev	Average Std Dev	Removed	Average	Std Dev	Average	Std Dev	76 Kemoved
LC/MS	2589 (1647) 421 (271)	1.9 (1.2) 4.4 (2.9)	99.915%	2742 (1740)	511 (327)	0.03 (0.02)	0.2 (0.1)	99.999%
TOPA	5230 (3400) 1140 (740)	3.5 (2.3) 1.3 (0.8)	99.933%	9295 (6050)	2599 (1690)	0.5 (0.3)	0.2 (0.1)	99.995%
TOF	2000 283	B.D.L NA		2300	141	B.D.L	NA	

Soil Results

- Summed PFAS (Bracketed numbers = organic fluorine equivalent)
- PFAS reduced to near or below detection limits
- >99.9% reduction
- Fluorine primarily retained as CaF₂

Emissions Results

- <0.2% of total fluorine emitted as PFAS
- <2% of total fluorine emitted as HF

savronsolutions.com ___

• Fluorinated breakdown products can be captured via vapor-phase GAC

Suspect Screening Solinite Canister

Compound Name	GC Match	Chemical	Concentration (ng/mL)		
		Formula	Lab Air (Blank)	Pilot #1	Pilot #2
3,3,4,4-Tetrafluorohexane	POOR	$C_6H_{10}F_4$	0.03	0.4	0.4
N-Benzamido-2- (heptafluoropropxy)-2,3,3,3- tetrafluoropropionamide	FAIR	$C_{13}H_7F_{11}N_2O_3$	0.03	0.9	0.5
Sebacic Acid, 2-bromo-4- fluorophenyl decyl ester	POOR	C ₂₆ H ₄₀ BrFO ₄		14.6	
Isophthalic acid, 2-fluorophenyl tetradecyl ester	POOR	C ₂₈ H ₃₇ FO ₄		0.1	
Propylphosphonic acid, fluoroanhydride, 4-methylcyclohexyl ester	POOR	$C_{10}H_{20}FO_2P$	0.15	0.3	0.8
2-[(4-Fluorophenyl)methyl]-5-([(3- methoxyphenyl)amino]methyl)-2,3- dihydro-1H-1,2,4-triazol-3-1	POOR	C ₁₇ H ₁₇ FN ₄ O ₂	1.22	15.2	29.1
savronsolutions.com					

- perfluroheptane reference standard
- All POOR or FAIR
 match
 - Minimum Match Factor (SI) and Reverse Match Factor (RSI) score of 500
- Not detected in GAC sorbent tubes

Pilot Test Key Results

Soil Results

- >99.9% removal to near or below detection limits of targeted analytes
- Confirmed fluorine sequestered in soil as CaF₂

Emissions Results

- <0.2% of total fluorine emitted as PFAS
- ~1% of total organic fluorine emitted as HF
- Air treatment by GAC

Other PFAS Projects

STARxpress System

ESTCP Project Number : ER23-8373

Challenge

Rapid On-Site Treatment

Pilot (10 m³)

HP-250 (250 m³)

Scalable Solutions

Challenge

Pilot (10 m³)

STARxpress (35 m³)

HP-250 (250 m³)

Scalable Solutions

Test Site/Objectives

- Deploy at Joint Base Elmendorf-Richardson (JBER), AK
- Design / fabricate two rapidly deployable 35 m³ ex situ full scale systems (STARxpress)
- Treat a minimum of 500 yd³ of PFAS-impacted soil

Fabrication

Field Implementation

Field Implementation

Field Implementation

savronsolutions.com _____

In Situ Treatment of PFAS and Co-Occurring Chemicals in Source Areas by Smoldering Combustion

ESTCP Project Number : ER22-7470

Objective

- Develop and demonstrate an injectable fuel that supports smoldering combustion and generates sufficient energy to promote the destruction and volatilization of PFAS and co-contaminants
- Conduct field demonstration Joint Base Cape Cod, FTA-1
 - 500 m³ source area soil volume

Considerations for Carbon Mixtures

- Cost
 - Relative cost of CAC/PAC/EVO products?
- Carbon and calcium content
 - Delivery provides sufficient carbon
- Ease of handling
 - Mixtures must be stable solutions
 - Surfactant cost-benefit
- Viscosity requirements for pumpability
 - <2200 centistokes (cSt mm²/s)

Fuel Mixture Development/Testing

- CAC/EVO+ Ca(OH)₂ challenges
- FluxsorbTM RP (PAC) + Ca(OH)₂ + H₂O

Next Steps

• Intermediate Scale Reactor (ISR) testing

- Fluoride mass balance
- Pre-and post treatment soil evaluation
- >99% reduction of PFOS/PFOA
 - Average pre-treatment soil concentration of PFOS and PFOA: 67.7 μg/kg
 - Average post-treatment soil concentrations of PFOS and PFOA: 0.1 µg/kg
- Awaiting analytical for emission samples
- Field demonstration this August

Field Demonstration Setup

39

Summary

- PFAS can be successfully destroyed using smoldering, leaving minimal treatment residuals
 - Surrogate fuel is used to achieve high temperatures required for PFAS destruction
 - PFAS in post-treatment soils reduced to below regulatory criteria
 - <1% of total fluorine emitted as PFAS
 - CaO enhances PFAS destruction at lower temperatures and simplifies vapor treatment requirements
- Co-treatment of contaminated GAC and soils increases net treatment
- Additional ex situ and in situ field demonstrations in progress

Acknowledgements

Brian Harrison

Laura Kinsman

Jorge Gabayet

Joshua Brown

Acknowledgements

Analytical

Kela Webber

David Patch

Acknowledgements

Particle Induced Gamma Emission (PIGE) / Spectroscopy

Kyle Doudrick

Gunnar Brown

Graham Peaslee

Liliya Chernysheva

Charbel Abou Khalil

Kurt Pennell

Kate Manz

Acknowledgements

Targeted and Non-Targeted Analysis

Jason Gerhard

Acknowledgements

Inspiration

Thank you for attending our webinar today.

Would you like to attend our next webinar?

We have several webinars happening in the near future. Go to <u>https://www.aaees.org/events</u> to reserve your spot.

Would you like to watch this webinar again?

A recording of today's event will be available on our website in a few weeks.

Not an AAEES member yet?

To determine which type of AAEES membership is the best fit for you, please go to AAEES.org or email Marisa Waterman at <u>mwaterman@aaees.org</u>.

Need a PDH Certificate?

You will be emailed a PDH Certificate for attending this webinar within the next week.

Questions?

Email Marisa Waterman at <u>mwaterman@aaees.org</u> with any questions you may have.